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Long-term potentiation (LTP) of synaptic transmission is
traditionally elicited by massively synchronous, high-frequency
inputs, which rarely occur naturally. Recent in vitro
experiments have revealed that both LTP and long-term
depression (LTD) can arise by appropriately pairing weak
synaptic inputs with action potentials in the postsynaptic cell.
This discovery has generated new insights into the conditions
under which synaptic modification may occur in pyramidal
neurons in vivo. First, it has been shown that the temporal
order of the synaptic input and the postsynaptic spike within a
narrow temporal window determines whether LTP or LTD is
elicited, according to a temporally asymmetric Hebbian
learning rule. Second, backpropagating action potentials are
able to serve as a global signal for synaptic plasticity in a
neuron compared with local associative interactions between
synaptic inputs on dendrites. Third, a specific temporal pattern
of activity — postsynaptic bursting — accompanies synaptic
potentiation in adults. 
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Abbreviations
EPSP excitatory postsynaptic potential
LTD long-term depression
LTP long-term potentiation
NMDA N-methyl-D-aspartate
TD temporal difference

Introduction

Acts of recollection, as they occur in experience, are due to the
fact that one movement has by nature another that succeeds it in
regular order. If this order be necessary, whenever a subject
experiences the former of two movements thus connected, it will
(invariably) experience the latter.

Aristotle, Fourth century B.C. 
De memoria et reminiscentia

[Title translation: On memory and reminiscences]

This citation from Aristotle highlights two properties of
long-term memories for facts and events: their associa-
tive nature and their temporal order. These properties
were incorporated into an influential proposal for synaptic
plasticity made by Donald Hebb in 1949. He suggested
that reverberatory activity in transient assemblies of

neurons carries a memory trace that becomes perma-
nently laid down as changes in synaptic weights when a
presynaptic neuron repeatedly or persistently takes part
in firing the postsynaptic cell [1]. Major research efforts
that are underway to explain long-term memory have
uncovered mechanisms that are consistent with both the
associative nature and the temporal order emphasized in
Hebb’s proposal. 

The first biological mechanism discovered that could
potentially support Hebb’s learning rule was long-term
potentiation (LTP) of synaptic transmission, as described
by Bliss and Lømo [2,3]. The original protocol for inducing
LTP was high-frequency stimulation of presynaptic neu-
rons. However, the highly synchronous population activity
required to induce this type of LTP has never been
observed during learning in vivo. An important question is
whether synaptic potentiation could be induced by more
natural activity patterns based on the relative timing of
presynaptic and postsynaptic activity as originally suggest-
ed by Hebb. 

In 1994, Stuart and Sakmann [4] reported that action
potentials can backpropagate in the dendrites of cortical
pyramidal neurons. More recently, it has been shown
that backpropagating spikes could directly serve as an
associative signal for LTP induction under some experi-
mental conditions [5,6]. These papers have raised
interest in the induction criteria for LTP, using behav-
iorally relevant stimuli. This paper briefly reviews the
type of neuronal activity that can be recorded during
learning episodes in vivo, and, with this background, dis-
cusses three fundamental questions about synaptic
learning rules based on recent experimental evidence
obtained in vitro:

1. Are synaptic learning rules temporal coincidence rules,
or is the temporal order of presynaptic and postsynaptic
activity important?

2. Is the postsynaptic induction of long-term plasticity con-
trolled by an associative signal localized in dendritic
segments, or is there a signal that is global to the neuron?

3. Is all successful information transfer through a neuron
associated with updating of synaptic weights, or is there
a specific type of activity that occurs during synaptic
modification? 

In this review, we focus on the postsynaptic neuron in
inducing and regulating synaptic plasticity and emphasize
the predictive, in addition to the associative, nature of
Hebbian learning. 

Natural patterns of activity and long-term synaptic plasticity
Ole Paulsen* and Terrence J Sejnowski†

nba210.qxd  04/05/2000  08:20  Page 172



Natural patterns of activity and long-term synaptic plasticity Paulsen and Sejnowski    173

Neuronal activity during behavioral learning
The conditions for synaptic plasticity in the behaving ani-
mal must be sought among the activity patterns that occur
during learning. The hippocampus is a structure of critical
importance in memory for facts and events [7]. In addition
to its established role in the processing of spatial informa-
tion in rodents [8], recent results indicate that
hippocampal neurons can also encode non-spatial informa-
tion [9•,10•] and take part in several memory processes
[11•]. Recent experiments have shed light on the nature of
the encoding system in the hippocampus. Although mem-
ory retrieval can be impaired by small localized lesions
within the hippocampus, the induction of new memories is
not [12••]. Also, repeated tetanization in a limited amount
of hippocampal tissue can disrupt learning that would oth-
erwise be supported [13•]. These findings raise the
question of what the natural conditions are that lead to
synaptic modifications that could support such a distrib-
uted encoding of memories.

Refinement of multielectrode recording techniques (mul-
tiple tetrodes and multisite silicon probes) has given us
new insights into the neuronal activity that occurs during
learning-related behavior in rats. Exploratory learning is
associated with characteristic slow rhythmic activity in
extracellularly recorded potentials [14]. Interestingly, sim-
ilar oscillations in the electroencephalogram (EEG) are
seen during memory tasks in humans [15•]. This so-called
theta activity is coexistent with faster oscillations at gamma
frequencies (30–100 Hz) [16•]. In hippocampal slice exper-
iments, theta-like oscillations can be induced by carbachol,
a cholinergic agonist, and 40 Hz activity can co-occur over
a range of carbachol concentrations [17,18]. The occur-
rence of rhythmic oscillatory activity may engage learning
mechanisms that depend on relative timing of activity in
the presynaptic and postsynaptic neurons, since the
rhythm will naturally organize the timing of the key ele-
ments of the neural circuit.

Hippocampal pyramidal neurons fire, on average, relative-
ly infrequently (< 1 Hz) but their spikes are phase-related
to the external theta field oscillation. They may be silent,
fire single spikes or brief high-frequency trains of spikes
(‘bursts’) during each cycle [19•]. Pyramidal neurons fire
bursts primarily when the animal is in a specific location in
space (the ‘place field’ of that particular neuron) [20,21].
Pyramidal layer interneurons have a higher firing rate, and
fire often on every cycle during a theta rhythm [19•]. In
behaving animals, interneurons fire at the same phase of
theta as do pyramidal neurons [19•], in contrast to what has
been reported in anaesthetized animals, where basket
interneurons and pyramidal cells fire at opposite phases of
the external theta oscillations [22]. As spikes in both the
pyramidal neurons and the interneurons are phase-related
to gamma oscillation [16•,23], and as interneurons fire on
the same phase of theta as pyramidal cells, they might con-
trol the exact timing of pyramidal cell firing in 40 Hz
subcycles of each theta cycle [24•]. There is now evidence

that action potentials can backpropagate in pyramidal neu-
ron dendrites in vivo [25], and backpropagating action
potentials can, under some circumstances, trigger Ca2+-
spike-associated bursts [26•]. 

These observations raise the possibility that burst firing
and phase-related firing patterns could support the induc-
tion of synaptic potentiation. Recent in vitro experiments
have addressed this issue.

Temporal constraint on pre- and postsynaptic
activity: an asymmetric Hebbian learning rule
The Hebbian learning rule has often been interpreted to
mean that synaptic potentiation should occur as a conse-
quence of coincident activity in presynaptic and
postsynaptic neurons. However, Hebb’s original sugges-
tion incorporated a temporal constraint, namely that
presynaptic activity must precede the activity in the post-
synaptic element for potentiation to occur [1]. 

Experiments setting out to test the effects of relative tim-
ing of spikes directly using single backpropagating action
potentials as the postsynaptic associative signal have
uncovered that the precise temporal order of the pre- and
postsynaptic signals of pairing is important [5,27•,28••,29•].
In developing neurons, the postsynaptic action potential
needs to take place within a narrow time window (within
~20 ms) following the presynaptic action potential for
robust potentiation to occur (as reported in studies in hip-
pocampal slice cultures [27•], cultured hippocampal
pyramidal neurons [28••] and developing frog tectal neu-
rons in vivo [29•]). Moreover, when the pairing was
reversed, so that the postsynaptic action potential occurred
immediately before the presynaptic action potential,
depression was induced [5,27•,28••,29•]. Thus, at least in
developing systems, a correlational learning rule exists at
the synaptic level where the sign of synaptic change
depends on the relative timing of the presynaptic input
and the postsynaptic action potential. These rules have
been studied in networks of cultured neurons, where poly-
synaptic pathways are modified according to this
temporally asymmetric Hebbian rule [30•].

In computer simulations of recurrent hippocampal net-
works, temporally asymmetric Hebbian synaptic plasticity
supports sequence learning [31,32]. This occurs because
the learning rule tends to wire together neurons that form
causal chains; that is, if neuron A fires before neuron B and
they represent two sequential sensory or motor states, the
connection between them will strengthen so that in the
future, neuron B is more likely to fire after neuron A. A
sequence of patterns can be stored in an oscillating net-
work model with recurrent excitatory synapses, as occurs
in the CA3 region of the hippocampus where 5–8 Hz theta
oscillations are observed in vivo [24•]. The sequence could
then be rapidly retrieved from the network in 40 Hz sub-
cycles of the slower theta oscillation [18,33]. 
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The motion of visual stimuli provides the visual cortex with
a sequence of highly correlated inputs. The development
of direction selectivity in developing visual cortical neu-
rons can be modeled with an asymmetric Hebbian rule
implemented in a recurrent network [34••].

Backpropagating action potentials as a global
neuronal associative signal
The induction of LTP at some excitatory synapses on pyra-
midal neurons depends on the activation of NMDA
receptors [3]. NMDA receptors are thought to serve as
molecular coincidence detectors, requiring the presynaptic
release of glutamate immediately followed by postsynaptic
depolarization. Where does the postsynaptic depolariza-
tion originate? The traditional view is that a ‘strong’
synaptic input can depolarize the local dendritic branch
sufficiently to enable the activation of NMDA receptors at
‘weak’ inputs on neighboring synapses [3]. However, back-
propagating action potentials could also provide the
postsynaptic associative signal [35•]. A backpropagating
action potential would serve as a global dendritic associa-
tive signal, reaching a large fraction — and potentially
all — of the synapses on a single neuron. The extent of the
influence of the backpropagating action potential could be
subject to control by ion channels and synaptic inhibition.
The physiological control of dendritic backpropagation of
action potentials has recently been reviewed elsewhere
[36•]. Figure 1 illustrates the difference between the con-
cepts of local cooperativity in the dendrites and global
backpropagating signals.

Induction of LTP depends on a postsynaptic Ca2+ increase
[3]. It has been widely assumed that the permeation of Ca2+

through NMDA receptors provides the Ca2+ signal neces-
sary for the induction of LTP [3]. However, voltage-gated
Ca2+ channels and Ca2+-induced Ca2+ release from intracel-
lular stores may also contribute to the Ca2+ transient

observed in dendritic spines following different types of
activation [37•–40•]. Confocal imaging and two- and multi-
photon microscopy have been used to measure Ca2+

transients in single dendritic spines during synaptic activa-
tion and following backpropagation of action potentials
[37•–40•]. Single backpropagating action potentials pro-
duce a small Ca2+ influx [41], while the Ca2+ transient
following pairing of synaptic activation and backpropagat-
ing action potentials depends critically on the relative
timing of the backpropagating action potentials and the
synaptic activation. The spinous Ca2+ transient evoked by
pairing an excitatory postsynaptic potential (EPSP) and a
backpropagating action potential was larger if the action
potential followed the EPSP than if it preceded it [37•]. 

These observations can be modeled using MCell, a com-
puter program which simulates the diffusion of
neurotransmitter molecules and subcellular signaling
[42•,43]. The rise and fall of the backpropagating action
potential sets the time scale for the rapid depolarization
pulse that occurs at distal synapses. This pulse, in turn,
determines the conditions for massive entry of Ca2+ into
the spine. The time course for glutamate binding to the
NMDA receptor is much longer than the width of the
backpropagating action potential, so the dynamics of Ca2+,
and the binding of Ca2+ to Ca2+-binding proteins, depend
in a highly nonlinear way on the relative timing of these
two signals [43]. As a consequence of these biophysical
mechanisms, the change in the synaptic strength depends
not on the coincidence of presynaptic with postsynaptic
activity, but, to a first approximation, with the time deriva-
tive of the postsynaptic activity [34••]. This temporally
asymmetric form of the Hebbian learning rule has pro-
found consequences for learning in highly recurrent
networks of neurons, such as those found in the neocortex
and area CA3 of the hippocampus.
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Figure 1

Two models for induction of synaptic
modifications in the hippocampus.
(a) Conventional model for induction of LTP. A
‘strong’ input (large number of synchronously
active afferent input fibers) produces a local
dendritic depolarization that unblocks NMDA
receptors. Synaptically released glutamate in
neighboring excitatory synapses, concurrently
active with the strong input, can activate the
NMDA receptor providing the necessary Ca2+

signal for induction of LTP. (b) New model for
induction of synaptic modifications based on
backpropagating action potentials. In this
scenario, postsynaptic action potentials
provide a global signal in the neuron, allowing
all synapses onto this neuron to be modified,
according to their exact timing relative to the
postsynaptic action potentials (temporally
asymmetric Hebbian learning rule).
Postsynaptic bursting signals potentiation in
recently active synapses. 
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The nature of the postsynaptic associative
signal in adult animals
In cultured hippocampal neurons, repeated pairings of sin-
gle pre- and postsynaptic action potentials are sufficient to
induce synaptic potentiation [27•,28••]. This would be
expected to occur under normal developmental conditions
during establishment of the network architecture, but does
it also apply to hippocampal neurons in adult animals?
Apparently not, according to two recent studies in hip-
pocampal slices prepared acutely from adult mice and rats
[44••,45••] where pairings of synaptic inputs with single
postsynaptic action potentials was not sufficient to induce
LTP; however, pairing with postsynaptic bursting activity
did induce LTP. 

A standard procedure for inducing synaptic plasticity in
hippocampal slices from adult mice is a long train of rela-
tively low-frequency afferent activity (1–10 Hz). Under
these conditions, synaptic potentiation or depression could
be induced depending on the frequency of activation, with
depression occurring at the lowest frequencies and poten-
tiation above a frequency threshold [46]. Certain genetic
modifications can change the frequency threshold
between LTP and LTD (long-term depression), and these
usually lead to a deficit in performance in memory tasks
[46,47,48•]. Consistent with theoretical models of develop-
ing cortex, which predicted a sliding modification
threshold [49], the frequency threshold can be dynamical-
ly altered by priming with a high-frequency input [50•].

A recent discovery has raised another interesting possibili-
ty regarding the nature of the threshold separating LTP
from LTD. By monitoring the postsynaptic cell with intra-
cellular recording, it was shown that at 5 Hz afferent
activity, induction of LTP depended on postsynaptic burst
firing [44••]. A direct comparison of the efficiency of single
spikes and bursts in inducing LTP using behaviorally plau-
sible stimuli revealed that bursting was indeed more
efficient than single spikes in inducing LTP, and might be
necessary for potentiation to occur in slices from adult rats
[45••]. In these experiments, postsynaptic bursting was
both necessary and sufficient for synaptic potentiation
when paired with presynaptic single spikes, whereas
presynaptic bursting was neither necessary nor sufficient
[45••]. It is conceivable that in the adult bursting satisfies
the postsynaptic requirements for NMDA receptor activa-
tion, whereas single action potentials do not satisfy the
requirements. Thus, a single burst of action potentials may
replace the need in developing neurons for repeated pair-
ing of single spikes (Figure 1).

What controls burst firing in neurons? A specific pattern of
activity may provide the signal for bursting to occur. It was
recently found in neocortical neurons that distal EPSPs
that immediately follow backpropagating action potentials
(3–7 ms later) can trigger Ca2+ spikes in the dendrites
[51••]. Such dendritic Ca2+ spikes are accompanied by
burst firing in the soma [51••,52,53]. Direct recording from

dendrites of CA1 pyramidal cells in the hippocampus
in vivo has confirmed that dendritic Ca2+ spikes are always
preceded by fast action potentials [26•]. Interestingly, the
magnitude of action-potential-induced dendritic Ca2+ tran-
sients correlate positively to LTP induction by theta burst
stimuli in developing hippocampal neurons [54•]. 

Bursting in hippocampal neurons occurs naturally under
two behavioral conditions. First, during active exploration
of novel environments, hippocampal neurons that code for
the current location in space of the animal typically show
bursting activity repeated at an interburst frequency
between 5 and 12 Hz [20,21]. These are the hippocampal
neurons most likely to be involved in associative learning.
Second, during slow-wave sleep, spike sequences detected
during behavior are ‘replayed’ on a faster timescale during
sharp-wave bursts, and it has been suggested that this
activity is associated with the consolidation of memory
[55•,56••]. It has been reported that LTP can be induced
during sharp waves by pairing sharp-wave activity with
strong postsynaptic depolarization of individual pyramidal
cells [57•]. The occurrence of bursting under conditions
presumed to be associated with memory induction in vivo
along with the requirement of bursting for synaptic poten-
tiation in vitro suggests that in the adult, bursting is a
neuronal activity specifically signaling memory-related
synaptic potentiation. 

A specific postsynaptic activity signaling synaptic potenti-
ation would be interesting for at least two reasons. First, it
re-emphasizes the critical role of activity in the postsynap-
tic neuron for synaptic plasticity to occur. Second, it
suggests that at least three logic levels of signaling exist in
memory encoding: silence, single spikes transferring infor-
mation, and bursts signifying changes in synaptic weights.
Whereas in developing neurons single spikes provide the
adequate signal for laying down the architecture of a net-
work, in the adult a reinforcement signal — bursting
triggered by a specific afferent input — might be required
for synaptic plasticity to occur.

The existence of bursting as a global signal might have far-
reaching implications. Burst firing in the cell body could
play a role in synaptic plasticity also by action-potential-
dependent regulation of gene expression [58]. But how
could a signal from the nucleus reach and modify only the
relevant synapses? Recently, Frey and Morris [59] showed
that weak tetanization which would normally lead to short-
lasting LTP (‘early LTP’) could induce longer-lasting LTP
(‘late LTP’) if a separate pathway had been strongly
tetanized earlier. Since late LTP requires both protein and
mRNA synthesis, induction of LTP may be associated with
the setting of a ‘synaptic tag’ at activated synapses, which is
capable of sequestering a plasticity-maintenance chemical
message from the nucleus [60••]. More recently it has been
suggested that the late-LTP signal does not need to be
synaptic, but can be replaced by postsynaptic bursting activ-
ity [61]. If this is indeed the case, it would be tempting to

Natural patterns of activity and long-term synaptic plasticity Paulsen and Sejnowski    175

nba210.qxd  04/05/2000  08:20  Page 175



speculate that the burst firing that is so prevalent during
sleep might have a function related to the maintenance of
synaptic weights in recently altered synapses (‘consolida-
tion’) and for the structural reorganization of the neuropil,
perhaps involving new spines and dendritic branches,
which may require gene regulation [62–64].

Computational consequences
The demonstration that patterns of activity that occur in
vivo during learning can elicit long-term changes of synap-
tic strengths in vitro makes it more likely that we are
getting closer to understanding the mechanisms underly-
ing learning and memory. If so, then some of the
conditions accompanying these changes may be important
clues to the cellular substrates of the behavioral changes
that accompany learning. In particular, the time scale and
the temporal asymmetry in the learning rule have impor-
tant implications for the organization of cortical circuits.
The importance of temporal order on a millisecond time
scale for eliciting LTP and LTD suggests that precise cel-
lular and molecular mechanisms may regulate spike timing
in cortical circuits [65]. 

The timing of a spike in the postsynaptic neuron divides
the excitatory input activities that occur during the
+/–20 ms temporal window into two groups: those synaps-
es that contributed to depolarization preceding the spike,
and those that cannot have contributed because they were
activated after the spike. This causal structure is directly
translated into synaptic plasticity by the temporally asym-
metric learning rule, which potentiates those synapses that
are active immediately preceding the postsynaptic spike
and depresses those synapses that are active directly after
the spike [5]. This takes into account the temporal order of
continuous events in the world, as noted by Aristotle.

The temporally asymmetric Hebbian learning rule imple-
ments the temporal difference (TD) learning algorithm in
reinforcement learning [31]. TD learning allows predic-
tions to be made about future events in the world as a
consequence of experiencing sequences of inputs. For
example, in a model system for honeybee foraging based
on classical conditioning [66], the synaptic input learns to
predict future reward: if the actual reward is greater than
predicted, the postsynaptic neuron is depolarized and the
synapse strengthens, but if the reward is less than predict-
ed, the postsynaptic neuron is hyperpolarized and the
synapse decreases in strength [66]. At the cellular level in
the adult animal, ‘reward’ might be signaled by postsynap-
tic bursting activity, mediated by the ability of distal inputs
to trigger dendritic Ca2+ spikes if timed immediately fol-
lowing a backpropagating fast action potential [51••].
Temporal order is also important for classical conditioning,
though the time window is a few seconds — two orders of
magnitude longer than that found in the cortex and hip-
pocampus. Thus, TD learning can be used by the cortex to
memorize long sequences of input states, which might be
useful for storing a musical composition, in addition to the

much slower learning of strategies for survival in an uncer-
tain environment [67].

Perhaps the most exciting theoretical implication of the
temporally asymmetric Hebbian learning rule is its ability
to create and stabilize activity patterns in neural assem-
blies. First, the combination of LTP and LTD achieves a
balance which overcomes the problem of synaptic satura-
tion found to occur with learning rules that can only
increase the strengths of synapses [68]. Second, rather
than requiring a consensus of coupled neurons to fire
together in order to wire together, the temporal asymme-
try in the learning means that the first neuron to respond
to a new pattern could help to recruit other neurons that
are slower to respond through temporally asymmetric
Hebbian plasticity [69•]. Finally, the temporally asymmet-
ric Hebbian learning rule will tend to make persistent
patterns of activity in a recurrent neural assembly more
persistent, as Hebb first suggested, but ironically this
model requires the anti-Hebbian version, in which a
synapse decreases in strength when the EPSP precedes
the postsynaptic spike, and increases in strength when the
EPSP occurs after the spike [70•,71]. From discussions at
a recent workshop where many of the experimental and
theoretical researchers studying time-dependent synaptic
plasticity gathered to compare notes on work in progress,
it was clear that exciting new developments lie ahead [72].

Conclusions
All of the results reported here were from studies on pyra-
midal neurons. We do not have comparable knowledge of
interneurons, which are highly diverse and may have a
variety of different roles in regulating synaptic plasticity.
Without an account of mechanisms for plasticity in
interneurons it will not be possible to understand how a
network of neurons learns new patterns of activity. Another
important area that this review has not focused on is presy-
naptic mechanisms that might also be involved in the
maintenance of synaptic plasticity. 

The discovery of backpropagating action potentials has
refocused attention on the role of the postsynaptic neuron
in synaptic plasticity. Evidence is mounting that the rela-
tive timing of presynaptic activity and backpropagating
action potentials in the postsynaptic cell can induce long-
term synaptic changes in hippocampal pyramidal neurons
by activity patterns known to occur during learning in vivo.
The shift of emphasis to the temporal domain has opened
up an exciting new chapter in the theoretical analysis of
synaptic plasticity and neural networks, in which the pre-
dictive rather than the associative nature of Hebbian
learning is being explored [73].
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