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Abstract 
We analyze evolutionary trends in artificial neural dynamics 
and network architectures specified by haploid genomes in 
the Polyworld computational ecology. We discover 
consistent trends in neural connection densities, synaptic 
weights and learning rates, entropy, mutual information, and 
an information-theoretic measure of complexity. In 
particular, we observe a consistent trend towards greater 
structural elaboration and adaptability, with a concomitant 
and statistically significant growth in neural complexity. 

Introduction 
The existence of evolutionary trends in complexity is a 
much debated topic. Some (Gould 1994) have argued 
against any such trend. Others (Bonner 1988, McShea 
1996, Heylighen 1999, Adami et al. 2000, Carroll 2001, 
Adami 2002) have presented evidence and interpretations 
that support a trend towards increasing complexity in 
biological and genomic evolution. Darwin (1871) argued 
for a gradualist interpretation of the emergence and 
evolution of intelligence that suggests an increasing arrow 
of complexity. Bedau (et al. 1997, Rechsteiner and Bedau 
1999) has argued for evidence of an increasing and 
accelerating “evolutionary activity” in natural biological 
systems not demonstrated in artificial life models to date.  
 Previously, Langton (1990) showed that average mutual 
information (AMI) provides an effective measure of 
complexity in Cellular Automata (CA).1 In particular, AMI 
peaks where complexity is greatest, correlating with 
Langton’s lambda critical and Wolfram’s (1984) Class IV, 
“complex” CA.2 Crutchfield and Young (1990), amongst 
other more general, but less computable, formulations, 
define a statistical complexity for discrete finite automata 
                                                             
1 Mitchell et al. (1993) refute some claims by Packard 
(1988) relating Langton’s lambda parameter and 
computational capacities to evolved CA dynamics, but 
their only substantive observation about Langton’s results 
was that for finite automata the variance in complexity, as 
a function of lambda is large (particularly near lambda 
critical), thus limiting the value of lambda as a predictor of 
the dynamics of any particular CA, even while it 
effectively predicts average CA dynamics. 
2 Gray (2003) argues that Wolfram’s four classes may need 
to be augmented to fully specify the range of CA 
dynamics, but the original four classes are widely 
acknowledged to make a useful, if coarse, first cut. 

(DFA), based on “symmetries” (any statistical regularities) 
induced by the DFA, that captures such a peak in 
complexity for DFA predicting binary strings. They relate 
their complexity measure to AMI between past and future 
sequences, but note that AMI is at most an upper bound on 
their DFA complexity. Shalizi (2003) has derived a related, 
pointwise “local statistical complexity”, applicable to 
networks, that is based on mutual information between the 
“causal state” at a point in a graph and the past “light-
cone” at that point. 
 Tononi et al. (1994) proposed an information-theoretic 
measure of complexity in networks that combines a 
measure of global integration (reduced independence, 
related to AMI) with a measure of segregation 
(specialization) of form and function. The emergence of 
such complexity and of specific structural features of 
networks is interrelated (Sporns et al., 2000). Complex 
neural dynamics requires specific structural motifs, as well 
as the active structuring of sensory inputs by embodied 
agents (Lungarella et al. 2005). 
 To study the general issue of evolutionary trends in 
complexity, and the specific issue of quantifying 
complexity in evolved ANNs, we have updated and 
extended an early artificial life model, Polyworld (Yaeger 
1994), to permit the acquisition of anatomical and 
functional data from each agent’s artificial neural network 
(ANN), from birth to death. We analyze evolutionary 
trends in the structure and function of these networks, 
using both connectivity and information-theoretical 
measures. By so doing, we seek to establish baseline 
quantitative measures of complexity that can be used to 
assess evolutionary trends in natural and artificial living 
systems. 

Tools and Techniques 

Polyworld Simulator 
Polyworld is a computational model of an ecology 
populated with haploid agents, each with a suite of 
primitive behaviors (move, turn, eat, mate, attack, light, 
focus) under continuous control of an ANN consisting of 
summing and squashing neurons and synapses that adapt 
via Hebbian learning. The architecture of the ANN is 
encoded in the organism's genome. These network designs 
are expressed in a probabilistic, generative manner, so a 
single genome can produce a small class of neural 



anatomies, while the full range of genetic encodings can 
produce a very large class of neural anatomies, which are 
the main focus of evolution in Polyworld. Thus Polyworld 
offers the opportunity to explore the relationship between 
adaptive behavior, structural elaboration of networks, and 
agents’ capacity to generate and integrate information, 
while offering complete access to all neural and ecological 
variables. 
 The primary input to the agents’ ANNs, and sole sense 
mechanism, is vision. The 3D environment in which the 
simulation takes place is rendered (with traditional 
computer graphics imaging techniques) from each agent’s 
point of view and the resulting pixel map is fed as input to 
the ANN, as if it were light falling on a retina. 
 To be successful and thrive in Polyworld agents must 
replenish energy expended on all activity by finding and 
eating food, or by killing and eating other agents. They 
must also find mating partners and reproduce. Since 
reproduction is under behavioral control of the agents, 
populations may be self-sustaining or not. When they are 
self-sustaining, there is no fitness function save natural 
selection. When a population is not self-sustaining, a 
steady-state Genetic Algorithm (GA) guarantees a 
minimum number of agents in the world, using an ad hoc 
heuristic fitness function that rewards reproduction, long 
life, consumption of food, and movement, to varying 
degrees. Fitness only affects selection and reproduction 
when the agents are not self-sustaining. Half of this series 
of simulations never invoked the fitness function for agent 
creation; of the remaining, the latest time the fitness 
function was used was t=3,263 (out of 10,000). 
 To limit computational demands, a maximum population 
of 300 agents was imposed in all simulations. Once this 
limit is reached, reproduction is halted until a death occurs, 
unless the “smite” option is enabled (see below). This limit 
can have profound consequences, eliminating or slowing 
evolutionary change due to the inability of viable agents to 
produce offspring. In these simulations, max population 
was reached between t=2,000 and t=5,000. The effects of 
this constraint (and of the smite functionality, see below) 
are sufficiently profound that all data reported herein 
indicate (by a gray bullet) the time at which maximum 
population was achieved. 
 To address this evolutionary slowdown, a “smite” option 
was added to Polyworld. When employed, as in these 
simulations, a list of least fit agents is maintained. Then 
when two agents would normally reproduce, were it not for 
the population cap, the currently least fit agent is culled, 
and the mating pair is allowed to reproduce, thus 
implementing a replace least fit GA technique. This 
approach appears to at least partially overcome the 
evolutionary slowdown resulting from the population limit. 
 Once engaged, however, this technique does affect the 
observed values of fitness. As a result of culling, agents 
have fewer opportunities to move, eat, and mate, and they 
die at a smaller fraction of their possible lifespan—all key 
contributors to heuristic fitness. Fitness is thus significantly 
diminished once smite is engaged. (Selection is not directly 

affected, since the steady-state GA is no longer in use by 
the time smite is engaged and natural selection is not based 
on heuristic fitness.) Max population marks on the graphs 
also effectively denote the time at which smite is engaged. 
 Details of the simulation engine can be found in (Yaeger 
1994), or by consulting the open source code at 
http://sourceforge.net/projects/polyworld. 

Network Analysis Methods 
We apply two sets of measures—network and 

information theoretic—in analyzing the structure and 
function of evolving ANNs.  

Simple network measures such as binary connection 
density, average connection weight, average activation per 
unit and total amount of synaptic change are gathered from 
connection matrices and activity traces of the 10 currently 
most fit individuals that are recorded at fixed time intervals 
of 1,000 time steps. Changes over the course of the 
lifetimes of these agents are collated by comparing 
connection patterns at birth and death (typically around 
500 time steps apart).  

Information theoretical measures are computed from 
complete records of neural activations over the lifetime of 
an agent, using computational methods and algorithms 
introduced in Lungarella et al. (2005). Entropy H(X) and 
mutual information MI(X,Y) are derived from discretized 
states xi and yi of the neural activation variables X and Y 
(traces of activation for two neurons), following standard 
formulae of statistical information theory: 
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Entropy is calculated based on estimates for the 

probabilities of the NX states of variable X, while mutual 
information results from distributions of single and joint 
state probabilities of variables X and Y, existing in NX and 
NY discrete states, respectively. Time series were 
discretized using 16 states to ensure that single and joint 
probability histograms were sufficiently populated. 

In addition to univariate and bivariate informational 
measures we also calculated measures that capture the 
distribution of information across an entire system of 
variables X (bold X denotes a set of N variables Xi; for our 
current purposes each Xi corresponds to one of the neural 
activation variables). We derived entropies for larger sets 
of variables from their covariance matrices using standard 
formulae (Papoulis 1990; Cover and Thomas 1991). 



While MI(X,Y) quantifies statistical dependence of two 
variables, integration I(X) (Tononi et al. 1994) represents 
its multivariate extension measuring the total amount of 
statistical dependence between a set of variables X: 

! 

I(X) = " H(X
i
)

i=1

N

# "H(X)  

Complexity is incompatible with total integration (all 
variables maximally correlated or integrated) and with total 
randomness (all variables maximally decorrelated or 
segregated). Instead, complexity corresponds to the 
coexistence of integration and segregation within a single 
system (Tononi et al. 1994, Sporns et al. 2000). In neural 
terms, integration and segregation express the total amount 
of statistical dependence between neurons and the pattern 
of information distribution among them. A corresponding 
quantitative measure of complexity 
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captures the degree to which globally integrated and locally 
segregated information coexists within the neural system 
X, composed of individual neurons Xi. (X – Xi is the set of 
all N-1 variables Xj where j ≠ i.) Previous analyses have 
shown that C(X) is high for neural systems that effectively 
combine functional segregation and integration, e.g. by 
combining specialized neurons and global (system-wide) 
interactions within a common architecture. On the other 
hand, C(X) is low for random systems (lacking global 
integration), or for systems that are highly uniform (lacking 
local specialization). 
 Connectivity measures allow insights about the number, 
density, activation, and plasticity of neural units and their 
interconnections. Information-theoretical measures allow 
insights about the amount and distribution of information 
in input units (I) driven by sensory stimulation as well as 
interconnected processing units (P) that respond to inputs 
and generate motor outputs. All observed evolutionary 
changes are the result of progressive mutation, selection 
and variation in the agent population’s genomes, as well as 
emergent processes related to behavioral interactions, 
population density, and the like. 

Simulations and Data Acquisition 

The Simulations 
All of the simulations carried out for this analysis were 
identical except for the seed to the pseudo-random number 
generator. In all cases the world is configured so that food 
only grows in two bands of unequal area, but initially equal 
density, covering a total of 50% of the world area. This 
particular configuration is one sample from a series of runs 
investigating optimal foraging/resource matching (Griffith 
and Yaeger 2006), and is very simple in terms of what is 
required of the agents in order to survive and reproduce. 

  The world is initially seeded with 90 agents with 
identical seed genomes. (Their neural architectures vary 
subtly, due to the probabilistic nature of the expression of 
the genome when producing these neural architectures.)  
The seed genome was designed to elicit nominal, 
“reasonable” initial behaviors within the context of the 
Polyworld environment—move towards green (food), turn 
away from and attack red (attackers, barriers), mate with 
blue (agents expressing their mating behavior). The seed 
genome was crafted so as to produce a nearly viable 
species that exhibits easily understood behaviors. However, 
the initial seed population, without the benefit of variation 
and selection, cannot “succeed”—cannot sustain its 
numbers over time—with its existing range of neural 
anatomies and behaviors. 
 A seed genome was used in these experiments to confine 
evolutionary search to a smaller portion of the possible 
state space. (Similar runs using completely random initial 
seed populations produced viable populations, but the time 
to do so varied hugely, as did the range of solutions, 
making data gathering and data comparisons difficult.) To 
maintain this state space confinement, the steady-state GA 
creation of agents in low-population conditions was limited 
to producing matings between agents from the N-best list 
and to the occasional elitist reintroduction of the best ever 
genome. No random “hopeful monsters” were allowed. 
 Over slightly varying timescales, all ten simulation runs 
produced viable populations that matched the available 
resources in an approximate ideal free distribution (see 
Griffith and Yaeger 2006 for additional details). 

The Data 
As 10 simulations were carried out, the simulator recorded 
the following, for all agents: 

• ANN anatomy—a signed, weighted connection 
 matrix—at birth 

• ANN anatomy at death 
• ANN function—the neural activation levels for all 

 neurons at all time steps of an agent’s life 
Data was culled on the fly, retaining only the top 10 “best” 
(based on heuristic fitness) agents that had died at any time 
in the previous 1,000 time steps. All runs lasted for 10,000 
time steps. For analysis, neurons are divided into input (I) 
neurons, that relay sensory activation, and processing (P) 
neurons, including both internal and motor neurons. 
 In addition, a log of the mean and standard deviation, 
over the complete population, of the values of all genes, at 
each time step, was recorded during these runs. Subsequent 
data processing allowed the estimation of the average 
learning rate at all synapses in the ANNs over time. 
 Statistical trends in population data were evaluated using 
standard independent-measures t-tests for comparisons 
between the seed generation and the time point at which 
maximal population was reached (grey asterisk at t=3,500 
indicates p<0.01), as well as between the seed generation 
and t=10,000 (black asterisk, p<0.01). 



Results 

Simulation Metrics 
The simulation metric results are displayed in Figure 1. 

Population. Populations reached the imposed maximum of 
300 agents at times ranging from 2,000 to 5,000 time steps, 
averaging approximately 3,500 time steps (Fig. 1A). All 10 
runs reached maximum population by 5,000 time steps. 
Reaching maximum population signifies an unequivocal 
success at surviving and thriving in the world. It also 
denotes the time at which the smite function is engaged. 

Smitten. The number of agents smitten (see above) grows 
rapidly once the population reaches its maximum (Fig. 1B). 
This demonstrates how prolific the agents have become. At 
this time agent lifespan begins to decrease sharply, 
producing a downward trend in heuristic fitness. 

Learning Rate. There is a pronounced growth in learning 
rate (Fig. 1C), as determined from the genes that control 
the Hebbian synaptic learning rate, averaged over the entire 
population at each time step. The growth is nearly linear 
over the life of the runs, unaffected by the population limit, 
smite activity, or heuristic fitness function, unlike some 
other metrics. 

Fitness. On average, the heuristic fitness function averaged 
over the entire population at each time step (Fig. 1D) 
shows a strong increase from t=0 to t=3,000, followed by a 
plateau from t=3,000 to t=5,000, then a sharp decline from 
t=5,000 to simulation end. These transitions correspond to 
the average and final times at which populations reach the 
artificially imposed maximum, and thus the times at which 

the smite function is initially engaged and then comes to 
dominate population dynamics. The resulting reduction in 
lifespan produces a sharp drop in fitness. Early on, 
however, fitness continues to climb well after it has ceased 
to influence selection and reproduction (after about 
t=1,000), suggesting that however ad hoc, this heuristic 
function is capturing fitness in a way that is, at least 
initially, consistent with natural selection in this 
environment. 

Simple Network Metrics 

Statistical trends of network metrics across agent 
populations are displayed in Figures 2 and 3. 

Unit Number and Connection Density. While ANN sizes 
remained approximately constant for input and processing 
units (Fig. 2A,B), connection density underwent significant 
growth, with a faster rate among processing units (Fig. 
2C,D). Average connection strengths increased between I 
and P neurons as well as amongst P neurons, the latter 

Figure 1: Simulation metrics. (A) Population count 
(B) Smitten count (C) Learning rate (D) Fitness. 
 

Figure 2: Network metrics. (A) Number of input (I) units        
(B) Number of processing (P) units (C) I→P connection density 
(D) P↔P connection density (E) Average absolute connection 
strengths for I→P connections and (F) P↔P connections. 
 



showing earlier and larger increases overall (Fig. 2E,F), 
with much of this increase (measured at “death”) due to 
learning (see below). Taken together, these changes 
indicate strong evolutionary pressure towards more 
structural connectivity within the agents’ ANN. 
 

Unit Activity. Despite these large increases in structural 
connectivity, changes in overall activation levels 
(expressed per neuron and per time step) over the course of 
evolution are relatively modest. I neuron activity initially 
rises somewhat (Fig. 3A), probably reflecting increases in 
population density and thus elevated levels of agent 
interactions. P neurons maintain constant activity levels 
(Fig. 3B), due to a preserved dynamical balance between 
excitatory and inhibitory connections (data not shown).        

Synaptic Change. One of the most significant and 
unequivocal trends we observed was the persistent rise in 
lifetime learning over evolutionary time scales. 
Connections linking I to P neurons (Fig. 3C), as well as 
those linking P neurons among themselves (Fig. 3D), 
underwent increasing amounts of synaptic change 
(measured as the absolute difference between connection 
strengths at death and birth). This trend continues well after 
the smite function becomes fully engaged and would 
probably extend past t=10,000. This is undoubtedly due, in 
large part, to the evolved increase in learning rate, but the 
difference in slopes between I→P connections and P↔P 
connections (also reflected in Fig. 2E,F) suggests this is not 
the only mechanism at work and is not yet fully 
understood. 

Information Theoretic Network Metrics 

Information-theoretic measures are expressed on a per 
neuron basis (entropy), as averages over binary 
relationships between neurons (mutual information), or as 
global indices of the dynamics of an entire ANN 
(integration and complexity). Our results are shown in 
Figure 4 and discussed in detail below. 

Figure 4: Information theoretic network metrics. (A,B) Entropy (C,D,E) Mutual information (F) Integration (G) Complexity. 

Figure 3: Network metrics (cont’d). (A) Average activity per unit 
per time step for I units and (B) P units. (C) Amount of synaptic 
change per connection for I→P and (D) P↔P connections. 
 



Entropy. I neurons undergo a significant and persistent 
increase of entropy over evolution (Fig. 4A), possibly a 
result of increased population density in Polyworld. 
Entropy is elevated in P neurons at the point maximal 
population is reached, but decreases afterwards (Fig. 4B). 

Mutual Information. For all binary relationships between 
I and P neurons, mutual information tends to decrease (Fig. 
4C,D,E). This trend is especially pronounced for P 
neurons, indicative of increased functional specialization 
and de-correlation of their activity patterns.  

Integration. Integration shows no clear trend across 
evolutionary stages. There is a slight, but possibly 
spurious, trend towards increased values, suggesting a 
weak tendency towards global integration (Fig. 4F). This 
trend appears to be largely offset by simultaneous 
decreases in mutual information indicating higher local 
specialization among I and P neurons. 

Complexity. Both of these tendencies—increased 
functional specialization as expressed in decreased mutual 
information and a possible modest increase in global 
integration—are reflected in a statistically significant 
increase of complexity (Fig. 4G). The observed increase is 
modest, possibly reflecting the relative simplicity of the 
ecological environment and the fitness function. 

Discussion 
Within the confines of this artificial life system, with 
simple behavioral requirements for agents to thrive—
survive, forage, and reproduce—we have observed and 
quantified consistent positive trends in structural 
elaboration and learning, that produce a statistically 
significant increase in neural complexity as a result of 
evolution.  
 What causes complexity to increase rather than decrease 
over time? Complexity, as measured in the present set of 
experiments, reflects the balance and co-existence of 
specialization and integration within a given neural 
architecture. Previous studies have indicated that 
complexity grows as neural systems become more effective 
in generating and integrating information (Sporns et al. 
2000) and more interactive with their physical 
environments (Lungarella et al. 2005). We suggest that 
similar factors underlie the observed growth of neural 
complexity in Polyworld. Driven by a broadly defined 
fitness function that promotes a variety of behavioral traits 
and increased population density, neural systems in 
Polyworld are exposed to progressively higher rates of 
sensory input and must process this information to generate 
coherent behaviors. These challenges are met by the 
emergence of more structurally elaborate and more plastic 
networks, whose activity exhibits more differentiated as 
well as integrated dynamics as measured by complexity. 
We believe the implications of these trends may be 
profound. 

 First, the establishment of a general upward trend in 
complexity as a result of the action of evolution on 
biologically modeled nervous systems and behaviors 
suggests that such a trend may be present in natural 
biological systems. This particular simulation environment 
can probably be thought of as a single ecological niche, in 
which we have now observed a growth in complexity up 
until such time as the niche is fully exploited—until the 
population has reached a maximum and the individuals’ 
expressed behaviors fully satisfy the only demands placed 
on them. We speculate that a well-formed measure of 
complexity applied to a biological species first occupying a 
new niche might exhibit similar growth. Then, given that 
all niches are not created equal, and that in more complex 
environments agent behaviors may result in additional 
niche creation, it is not difficult to imagine the observed 
growth in complexity extending to multiple niches and 
ecologies as a whole. 
 Second, the existence of trends in structural elaboration 
and learning capable of supporting a positive trend in 
complexity suggests that exploratory artificial life 
experiments may be able to first measure their progress and 
then continue to expand their horizons along this 
complexity scale. The earliest stated goals for Polyworld 
were to evolve its way up an intelligence spectrum, from 
the simplest levels of behavior to the most complex, 
adopting a “computational Aplysia” as a laudable first goal. 
We find the existence of a quantifiable, positive trend in 
evolved complexity in Polyworld encouraging. 
 Third, the existence of a much sought after “ruler”, for 
quantitatively assessing complexity in artificial nervous 
systems, puts us in a much better position to expand our 
computational ecologies. There are an almost unlimited 
number of possible extensions to the existing world and 
agent models, and it appears we may finally have a 
quantitative scale with which to assess the benefits accrued 
from these extensions. 
 Also, the steady increase in Hebbian learning rate 
suggests that evolution strongly favors learning over innate 
behaviors in this system. Since we expect learning to play a 
major role in any fundamentally intelligent behavior, 
selection for learning might be seen as a required precursor 
to the evolution of intelligence, which requirement seems 
to have been met. 

Future Directions 
Having verified that evolution in Polyworld produces a 
positive trend in our information-theoretic measure of 
complexity, we are now in a position to apply this “ruler” 
to assess the benefits of changes to the system. We predict 
that increases in the complexity (now in the common sense 
of richness, variability, and useful predictability) of the 
environment will directly increase evolved agents’ neural 
(information-theoretic) complexity. 
 In addition, both authors independently came to the 
realization, some years ago, that with a suitable measure of 
complexity in hand, complexity itself might be used 



directly as a most interesting and effective fitness function 
in evolutionary simulations—a hypothesis for which there 
is now some evidence (Sporns and Lungarella 2006). To 
this end we intend to build the information-theoretic 
complexity calculations, currently performed externally, 
directly into Polyworld, and study the course of evolution 
in a computational ecology specifically designed to 
optimize for neural complexity. 
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