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Abstract. The topic of evolutionary trends in complexity has drawn
much controversy in the artificial life community. Rather than investi-
gate the evolution of overall complexity, here we investigate the evolution
of topology of networks in the Polyworld artificial life system. Our in-
vestigation encompasses both the actual structure of neural networks of
agents in this system, and logical or functional networks inferred from
statistical dependencies between nodes in the networks. We find interest-
ing trends across several topological measures, which together imply a
trend of more integrated activity across the networks (with the networks
taking on a more “small-world” character) with evolutionary time.

1 Introduction

The nature of evolutionary trends in complexity has been subject to much debate
[1], with interest surrounding whether the evolutionary growth in complexity of
organisms in the natural world is the outcome of natural selection or some sort
of random walk [2, 3]. Indeed, this question has been explored in artificial life
systems: e.g. previous work with Polyworld has demonstrated that evolution
can and does select for increased complexity in a driven fashion in some cir-
cumstances, but also selects for complexity stability under other conditions [4,
5].

Here, our interest lies not so much in the evolution of (any particular mea-
sure of overall) complexity, but rather the manner in which the topology of neu-
ral networks adapt under evolutionary pressure. Specifically, we investigate the
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topology of neural networks of agents in the Polyworld artificial life system. We
examine both the actual structure of these networks, and their logical structure.

The logical structure of the neural networks is explored by inferring functional
networks [6, 7] from statistical dependencies between the time series of each node
in the underlying structural network. Here, we use mutual information [8] and
transfer entropy [9] to measure the statistical dependencies between the neurons.
We then examine the trends in several measures of the topology of the structural
and functional networks with respect to evolutionary time: in particular, we
measure the assortativity, modularity, clustering coefficient and closeness of the
networks. We find several interesting trends in the topologies, with the trends in
the structural and transfer entropy-based functional networks being most similar.
These networks become more non-assortative, less modular but more clustered,
and adopt shorter average path lengths with evolutionary time. These trends are
significant in that they imply the networks are taking on a more “small-world”
[10] character over evolutionary time.

2 Polyworld

Polyworld [11] is a computational ecology evolving populations of haploid agents,
each using a suite of primitive behaviors (move, turn, eat, mate, attack, light, fo-
cus) under continuous control of an Artificial Neural Network (ANN) employing
summing and squashing neurons with synapses that adapt via Hebbian learning.
The wiring diagram of the ANN is encoded in the organism’s genome, via a sta-
tistical description of the number of neural groups of excitatory and inhibitory
neurons, synaptic connection densities, ordered-ness of connections, and learning
rates. Input to the ANN consists of pixels from a rendering of the scene from
each agent’s point of view, like light falling on a retina. The agent morphologies
are simple and fixed, but agents’ interactions with the world and each other are
fairly complex, as they replenish energy by seeking out and consuming food or by
killing and eating other agents. They reproduce when two collocated agents si-
multaneously express their mating behaviors, using a number of crossover points
and a mutation rate that are also contained in the parental genomes [11].

Bounds on the agent population, both high and low, are maintained by al-
tering the energy consumption of the agents (as in [5]). As the population ap-
proaches the upper bound, the amount of energy depleted by all agent behaviors,
including neural activity, is increased in a continuous fashion. Reciprocally, as
the agent population approaches the minimum, energy depletion is decreased,
and agent lifespans may be artificially extended.

The simulation is initially seeded with a uniform population of agents that
have the minimum number of neural groups and a nearly minimal number of
neurons and synapses. While predisposed to some potentially beneficial behav-
iors, such as running towards food (green) and away from aggression (red; see
[11] for details on color use in Polyworld), these seed organisms are not a viable
species. I.e., without evolution they cannot sustain their numbers through their
reproductive behaviors and will inevitably die out.



As simulations progress both the structural architecture of the ANNs and
the activation of every neuron at every time step are recorded for every agent.
Here we use these neural activation recordings to determine functional networks
for each agent and compare functional network characteristics to the underlying
structural network characteristics.

3 Inferring Functional Networks

Two remote neural nodes are defined to be functionally connected where they
exhibit statistical dependence in time [6, 7]. The nodes considered could be vox-
els in BOLD recordings (e.g. [7]), or neurons in an artificial neural network (as
are used here). A functional network is then formed from a set of functional con-
nections. Inferring functional networks from time-series of node states therefore
involves two distinct steps: i. making some measure of the statistical dependence
or closeness between each node pair, then ii. deciding whether each closeness
value should constitute a link between the node pair. The closeness measure and
the inferred links can be either directional or undirectional.

Functional networks may be used to infer the underlying structural network
where this is unknown. More importantly, functional networks provide insight
into the logical structure of the network and how this changes as a function of
network activity (regardless of whether the underlying structure is known).

In this work, we use information-theoretical measures [8] for the closeness of
each pair X and Y . The mutual information between X and Y measures the
average reduction in uncertainty about x (or entropy H of x) that results from
learning the value of y, or vice versa:

I(X;Y ) =
∑

x,y

p(x, y) log2

p(x, y)

p(x)p(y)
. (1)

In this way, I(X;Y ) is a symmetric measure of the common information between
X and Y . Though it has been previously used to measure directed information
transfer from one variable to another, this is not valid: it is a symmetric measure
of statically shared information (which is useful in its own right).

Alternatively, the transfer entropy [9] was introduced as a directed measure
of dynamic information transfer from one variable to another. It quantifies the
information provided by a source node about a destination’s next state that was
not contained in the past of the destination. Specifically, the transfer entropy
from a source node Y to a destination X is the mutual information between
the previous state of the source yn and the next state of the destination xn+1,

conditioned on the past k states of the destination x
(k)
n :

TY →X(k) =
∑

xn+1,x
(k)
n ,yn

p(xn+1, x
(k)
n , yn) log2

p(xn+1|x
(k)
n , yn)

p(xn+1|x
(k)
n )

. (2)

The transfer entropy may be measured for any two time series X and Y and is
always a valid measure of the predictive gain from the source, but only represents
physical information transfer when measured on a causal link [12].



Here, we compute functional networks for each agent from the Polyworld
simulation using both mutual information and transfer entropy as separate mea-
sures of closeness. The continuous activation levels are first discretised in four
levels, and a history length k = 1 is used for the transfer entropy (this renders
it more towards an inference of causal effect than information transfer [13, 12]).

Several options are then available for deciding whether each pair of areas
should be considered functionally connected based on their closeness. One could
assign links to a given number or percentage of pairs based on the largest close-
ness values, or could use an approach based on the statistical significance of the
closeness measure, e.g. [14]. Here, the number of functional links was designed
to match the proportion of links in the underlying structural network, and the
largest such closeness values were assigned links. A (directed) link exists in the
structural network between two neurons where the source neuron is an input
to the target neuron. We consider both processing and input neurons in the
functional network.

4 Network Topological Measures

Analysis of the topology of functional networks provides useful information about
the dynamic behaviour of the network [7, 14]. In this section, we introduce the
measures of topology used to analyse the functional networks here. All were
calculated using [15].

Assortativity is the tendency observed in networks where nodes mostly
connect with similar nodes. Typically, this similarity is interpreted in terms
of degrees of nodes. Assortativity has been formally defined as a correlation
function of excess degree distributions and link distribution of a network [16,
17]. The concepts of degree distribution p(k) and excess degree distribution q(k)
for undirected networks are well known [17]. Given q(k), one can introduce the
quantity ej,k as the joint probability distribution of the remaining degrees of the
two nodes at either end of a randomly chosen link. Given these distributions,
the assortativity of an undirected network is defined as:

r =
1

σ2
q





∑

jk

jk (ej,k − q (j) q (k))



 , (3)

where σq is the standard deviation of q(k). Assortativity distributions can be
constructed by considering the local assortativity of all nodes in a network [18].

Closeness centrality of a node v is defined as the mean geodesic distance
(shortest path length) between the node and all other nodes in the network [19].
(Sometimes the quantity is inverted so that the nodes which are ‘most central’ to
the network G would get higher values). Closeness centrality is formally defined
as CC (v) =

∑

dG(v, t) where v 6= t and dG(v, t) is the shortest path distance
between nodes v and t.

Network modularity is the extent to which a network can be separated into
independent sub-networks. Formally [20], modularity quantifies the fraction of



links that are within the respective modules compared to all links in a network.
[20] introduces an algorithm which can partition a network into k modules and
measure the partition’s modularity Q. The measure uses the concept that a good
partition of a network should have a lot of within-module links and a very small
number of between-module links. The modularity can be written as:

Q =
∑k

s=1

[

ls
L

−

(

ds

2L

)2
]

, (4)

where k is the number of modules, L is the number of links in the network, ls is
the number of links between nodes in module s, and ds is the sum of degrees of
nodes in module s. To avoid getting a single module in all cases, this measure
imposes Q = 0 if all nodes are in the same module or nodes are placed randomly
into modules.

The clustering coefficient of a node characterizes the density of links in
the environment closest to a vertex. Formally, the clustering coefficient C of a
node is the ratio between the total number y of links connecting its neighbours
and the total number of all possible links between all these z nearest neighbours
[21]: C = 2y/ (z (z − 1)). The clustering coefficient C for a network is the average
C over all nodes.

5 Results and Discussion

We constructed the functional networks for each agent, and evaluated each mea-
sure of network topology on these and the underlying structural networks (which
had between 13 and 159 neurons, and 52 on average). We then averaged each
measure over sets of 100 sequential agents ordered by birth. The results are
plotted with respect to evolutionary time in Fig. 1. Clearly, all measures reach
a relatively steady state within 5000 – 12000 steps in evolutionary time. This
aligns with previous studies of trends in the complexity of the neural networks
in Polyworld [5] where the complexity is driven upwards over the initial 5000 or
so steps of evolution before the agents find a “good enough” solution. At this
point the drive for evolutionary change somewhat stagnates, as is reflected in
the steady state of the measures here.

In general, the transfer entropy-inferred functional networks show similar
trends to the structural networks across all measures. Interestingly, the transfer
entropy-inferred functional networks had a slightly smaller overlap (mean 17.6±
0.1%) with the underlying structural networks than the mutual information-
inferred functional networks (mean 19.1± 0.1%). It is possible that the transfer
entropy performs better at inferring the general interaction structure between
modules or regions in the structural network (thereby capturing the general
topological trends) without necessarily inferring the precise links any better.

As shown in Fig. 1(a), the structural networks tend to exhibit a negative
assortativity: this is not surprising as it is a known general characteristic of bi-
ological networks evolved under external pressure [22]. This is because negative
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Fig. 1. Trends in structural and functional networks versus evolutionary time. Mea-
sures are plotted for structural networks (red line), mutual information-inferred func-
tional networks (violet ×), and transfer entropy-inferred functional networks (blue �).
Error bars indicate the standard error of the mean.

assortativity supports connectivity between diverse elements in the network, an
important feature for producing complex behaviour. Unsurprisingly also, the
mutual information-inferred networks exhibit positive assortativity (since mu-
tual information is maximised for similar elements), while the transfer entropy-
inferred networks exhibit negative assortativity (since transfer entropy is min-
imised for similar elements). More interestingly, the structural and transfer
entropy-inferred networks become more neutrally assortative over time (i.e. less
negatively assortative). While this may seem surprising, it is possibly an artifact
of the elements in the network becoming more closely coupled as they evolve
and therefore become more similar, or perhaps reflects the increased clustering
occurring over evolutionary time.

Fig. 1(b) and Fig. 1(c) show that the structural and transfer entropy-inferred
networks become less modular but more clustered as they evolve. This is not a
contradiction: it indicates that the boundaries between modules are becoming
blurred with previously separated modules becoming more strongly clustered
both within themselves and across each other (i.e. finding the right balance be-
tween functional integration and segregation to give rise to complex behaviour).



The mutual information-inferred networks however exhibit a decrease in cluster-
ing coefficient. Again, this seems to be a relic of the mutual information measure
being maximised for similar elements: stronger coupling across clusters in the
underlying network is likely to diversify the activity of previously similar nodes,
thereby reducing clustering in this functional network.

Finally, Fig. 1(d) shows that the closeness centrality is reduced with evolu-
tionary time for all networks. Given the previous results, this is unsurprising
as all imply diversification of connectivity across the network with evolutionary
time. In fact, taken together these results (in particular the higher clustering and
lower shortest path lengths) suggest that the networks are becoming more small-
world [10] with evolutionary time. Again this is unsurprising but significant, since
the same effect is observed in many natural systems (including biological corti-
cal networks and networks optimised for complexity [23], as well as functional
networks inferred from neural networks in [14]) due to the advantages bestowed
by this property. Importantly though, recall that all measures reach a steady
state here: the neural networks do not continually improve on these desirable
features, but stop developing once a good enough solution is found.

6 Conclusion

We have measured functional networks to represent the logical activity of neural
networks of agents in the Polyworld artificial life system. Topological analysis
of these functional networks, and the underlying structural networks, revealed
clear trends with evolutionary time. The structure and activity in the networks
becomes more integrated over time, as may be expected in the evolution of
complex distributed processes. In particular, both the structural and functional
networks take on more of a small-world character as the evolution progresses.

Our results also showed interesting differences between the use of mutual
information and transfer entropy in inferring functional networks. The trans-
fer entropy-inferred functional networks have topological trends more similar to
those of the underlying structural networks, and also provided more intuitive
insights into network activity.

In extending this work, it would be desirable to evaluate the statistical sig-
nificance of the trends observed here. One method for doing this would be to
contrast the results here (where evolution is driven by genetic mixing) with
those produced by passive genetic drift (along the same lines as the comparison
of trends in complexity in [5]).
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