
A young animal or child perceives 
and identifies features in its envi- 

, roument in an apparently effort- 
less way. No presently known algorithms 
even approach this flexible, general- 
purpose perceptual capability. Discover- 
ing the principles that may underlie per- 
ceptual processing is important both for 
neuroscience and for the development of 
synthetic perceptual systems. 

Two important aspects of the mystery of 
perception are 
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(1) What processing functions does the 
neural “machinery” perform on 
perceptual input, and what is the 
circuitry that implements these 
functions? 

(2) How does this “machinery” come 
to be? 

Unlike conventional computer hard- 
ware, neural circuitry is not hard-wired or 
specified as an explicit set of point-to-point 
connections. Instead it develops under the 
influence of a genetic specification and. 
epigenetic factors, such as electrical 
activity, both before and after birth. How 
this happens is in large part unknown. 

Biological development processes are 
far too complex to hope that a relatively 
complete understanding of how a percep- 
tual system develops and functions will 
soon emerge. But we are familiar with 
complex synthetic systems, such as com- 
puters, whose principles of organization 
can be understood without one’s knowing 

How can a perceptual 
system develop to 
recognize specific 

features of its 
environment, without 

being told which 
features it should 
analyze, or even 

whether its 
identifications are 

correct? 

in detail how the components work. Fur- 
thermore, the same principles can be used 
to build computers in any of several differ- 
ent technologies. Might there be organiz- 
ing principles 

(1) that explain some essential aspects 
of how a perceptual system 
develops and functions; 

(2) that we can attempt to infer without 
waiting for far more detailed exper- 
imental information; and 

(3) that can lead to profitable experi- 
mental programs, testable predic- 
tions, and applications to synthetic 
perception as well as neuroscientific 
understanding? 

I believe the answer is yes, and that the use 
of theoretical neural networks that 
embody biologically-motivated rules and 
constraints is a powerful tool in this study. 

This optimism is encouraged by recent 
work’ in which I have found that a mul- 
tilayered network, developing according 
to simple yet biologically plausible “Hebb- 
type” rules,* self-organizes to produce 
feature-analyzing “cells.” These “cells” 
have response properties that are qualita- 
tively similar to those cells of the first few 
processing stages of the mammalian visual 
system.3 These properties include sensitiv- 
ity to light-dark contrast and sensitivity to 
the orientation of an edge or bar. These 
properties develop before birth in certain 
animals, hence before structured visual 
experience, and in the theoretical network 
the corresponding properties develop even 

.in the absence of structured input, using 
only random signaling activity in the input 
layer of the network. 

Why does a feature-analyzing function 
emerge from these development rules? Is 
it a mere accident or curiosity? Or are the 
development rules perhaps acting to 
optimize some quantity that is important 
to the information processing function of 
a perceptual system? 
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In this article, I briefly summarize the 
network ideas from an earlier 
publication’ and review some of the main 
results. This sets the stage for exploring 
why a feature-analyzing function emerges. 
I then show that even a single developing 
cell of a layered network exhibits a remark- 
able set of optimization properties. These 
properties are closely related to issues in 
statistics, theoretical physics, adaptive sig- 
nal processing, the formation of knowl- 
edge representations in artificial 
intelligence, and information theory. 

Next, I use these results to infer an 
information-theoretic principle that can be 
applied to the network as a whole, rather 
than a single cell. The organizing principle 
I propose is that the network connections 
develop in such a way as to maximize the 
amount of information that is preserved 
when signals are transformed at each 
processing stage, subject to certain con- 
straints. 

I illustrate how this principle works for 
some very simple cases. Much more work 
will be needed to apply the principle to 
practical computations of biologically 
important cases, but the approach appears 
very promising. I conclude with some 
speculative comments on why this princi- 
ple, or some variant of it, may be impor- 
tant for the emergence of perceptual 
function in biological and synthetic 
systems. 

A layered self-adaptive 
network 

The visual system is the best studied per- 
ceptual system in mammals. Visual infor- 
mation is processed in stages. Simple 
aspects of form, such as contrast and edge 
orientation, are analyzed in the earlier 
stages; more complex features are ana- 
lyzed later. Other aspects of visual process- 
ing, such as color and motion analysis, 
proceed in parallel with the analysis of 
form. 

Both the retina and cortex are organized 
into layers of cells with interconnections 
within and between layers. Within an ana- 
tomical layer, at least for the early process- 
ing stages, there is a population of cells 
each of which performs approximately the 
same processing function on its inputs. 
This population of cells can be thought of 
as an array of filters. Each cell processes 
input from a limited region of visual space, 
called the “receptive field” of that cell. 
More than one population of cells can 
share an anatomical layer. 

Many cells respond to input activity by 
firing an electrical pulse, or actionpoten- 
tial, that travels down the output fiber, or 
axon. These pulses cause a chemical neu- 
rotransmitter substance to be released at 
synapses, or regions of near-contact with 
other cells. The latter cells receive and pro- 
cess these chemical input signals. Some 
cells, for example in the retina, do not pro- 
duce action potentials, but instead exhibit 
more graded electrochemical phenomena 
that can be used for signaling. 

Although a cell’s response function is in 
general nonlinear, visual neurophysiolo- 
gists have found that for many cells, a lin- 
ear summation approximation is 
appropriate. In this approximation, the 
cell’s output response varies monotoni- 
cally with some linear combination of the 
cell’s input signal values. For cells that pro- 
duce action potentials, the output response 
can be defined as the firing rate at which 
the cell generates action potential pulses in 
response to its input signals. 

Specification of the network. Will a sim- 
ple self-adaptive network develop feature- 
analyzing cells without our specifying 
which features are to be analyzed? If it 
does, are these cell types related to those 
observed in biological systems? To address 
these questions, we first study a network 
that embodies some of the important bio- 
logical properties described above, but 
omits many complicating factors. This 
approach is useful both because many of 
the details are unknown, and because our 
goal is to understand what principles are 
most important for the development of 
perceptual functions. For example, if we 
want to know how nonlinearity of 
response may be important for develop- 
ment, it is valuable to see first whether a 
linear response system exhibits the main 
feature-analyzing properties that are bio- 
logically observed. Also, feedback connec- 
tions from later to earlier processing stages 
are known to exist, but it is not known how 
these connections might relate to the devel- 
opment of feature-analyzing functions. 
(There are many other functions that feed- 
back may serve, such as control of 
dynamic range, attentional mechanisms, 
and so on.) We choose to analyze networks 
without feedback, to understand their 
developmental properties first. 

The interconnections within the retina 
are known to be more complicated than a 
simple feedforward arrangement. Also, 
mechanisms that are not dependent on 
neural activity appear to be involved in the 
development of some feature-analyzing 

properties. The main purpose of our simu- 
lations is to explore what types of simple 
yet biologically plausible development 
rules suffice to generate feature-analyzing 
cell assemblies, rather than to rule out 
other ways of generating them. From the 
results of our simple model, we will infer 
a potential organizing principle that can 
encompass nonlinear cell response, more 
complex connectivity, and a variety of 
ways of forming and modifying con- 
nections. 

Our network is shown in Figure 1. The 
cells are organized into two-dimensional 
layers A, B, C, and so on, with feedfor- 
ward connections to each cell from an 
overlying neighborhood of cells of the 
previous layer. Layer A receives input 
from the visual world (if there is any such 
input). We focus especially on the case in 
which there is no input, but instead only 
random activity of the cells of layer A, 
with no correlation of activity from one 
cell to the next. This activity resembles ran- 
dom noise or snow on a TV screen. We 
consider this case in order to understand 
how certain feature-analyzing cells may 
emerge even before birth, as has been 
observed in certain primates. 

The positions of the connections to each 
cell need not be regular as in Figure 1, but 
can be chosen randomly according to a 
density distribution, such as a Gaussian, 
that favors connections from nearby cells 
of the previous layer. For simplicity, these 
positions are fixed for the duration of the 
development process. Each cell, at each 
time, has some signaling activity which we 
denote by a real number. Each cell exhibits 
a simple linear response, that is, the out- 
put is a linear combination of the inputs, 
with each input being weighted by a con- 
nection strength that will develop in a cer- 
tain way. Each model cell thus acts as a 
linear filter. 

Two points should be noted: 
(1) Defining the output response as a 

nonlinear, for example sigmoid, function 
of the weighted sum of the inputs would 
more closely approximate some properties 
of the firing rates of biological neurons. 
These are always nonnegative and saturate 
at some maximum rate. However, we will 
see that even a linear response rule can lead 
to the formation of feature-analyzing cells, 
and we will explore what properties of lin- 
ear adaptive filters are responsible for this 
formation. Some of the insights gained 
will be applicable to the nonlinear response 
case as well. 

(2) Any transformation implemented 
by a feedforward sequence of layers of lin- 
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ear filters is a linear transformation, and 
hence could be implemented by a single 
layer of connections with properly chosen, 
or in this case hardwired, connection 
strengths. However, our purpose is not to 
implement a particular transformation, 
but rather to study what transformations 
are learned by a network without supervi- 
sion. This multistage learning process 
depends upon the presence of multiple net- 
work layers. 

ENVIRONMENTAL 
INPUT (IF ANY) 

Layer A 

Layer B 
A Hebb rule. For the development pro- 

cess, we use a version of an idea proposed 
by the neuropsychologist Donald Hebb in 
1949. This idea has been central to much 
work on synthetic neural networks over 
the years, as well as to the thinking of neu- 
roscientists about how the development of 
synaptic connections may relate to mem- 
ory and learning phenomena. Hebb’s idea 
was that if cell 1 is one of the cells provid- 
ing input to cell 2, and if cell l’s activity 
tends to be “high” whenever cell 2’s 
activity is “high”, then the future contri- 
bution that the firing of cell 1 makes to the 
firing of cell 2 should increase. 

Layer C 

Layer D 

.:, 
‘;’ 

In the language of neural networks, the 
connection strength is increased, or made 
more positive. A mathematical formula- 
tion needs to be more precise than this, and 
state under what conditions the strength 
may decrease. We use a form in which the 
change in strength contains a term propor- 
tional to the product of input and output 
activities at that connection. The Hebbian 
idea of modifying connection strengths 
according to the degree of correlated 
activity between input and output is cen- 
tral to what follows. 

Figure 1. A  layered self-adaptive network with local feedforward connections. 
Each two-dimensional layer contains many cells. Five input connections to each of 
two cells in layers B, C, and D are shown. Several hundred inputs to each cell are 
used in simulations. Each cell also provides input to many cells of the following 
layer. Lateral connections within a layer, as discussed in the text, are not indicated 

previous work.’ 
Consider a cell M  and the cells L,, L2, 

For an analogy to a Hebbian rule, con- 
sider a group of people whose collective 
opinion on a question is by definition the 
weighted average of the opinions of its 
members. If, over time, a member’s opin- 
ion tends to agree with the group’s opin- 
ion, then the analog of the Hebb rule states 
that the individual member’s vote on 
future issues is to be weighted more 
strongly. The member’s vote is given less 
weight, or even negative weight, if he con- 
sistently disagrees with the group’s opin- 
ion. This type of positive-feedback control 
of weighting factors tends to lead to con- 
sensus within the group. As we shall see, 
it has other surprising consequences for 
the properties of the group, or output cell, 
response. 

. . , LN that provide input to M. For 
simplicity, we avoid treating effects that 
depend upon the time sequence of signal 
activity values. Instead, we think of the 
activity history of a layer as a set of “snap- 
shots,” in which the ordering of the snap- 
shots plays no role. That is, a set of activity 
values, denoted by (L;, L;, . . . , Lh), is 
presented as input to the M cell, the M cell 
generates an output activity value M”, 
and a new set of input activities is then 
presented. The superscript TI indexes the 
presentation of inputs, that is, the partic- 
ular snapshot, and the corresponding out- 
put. Then the linear response rule is 

where the a’s are arbitrary constants 
(az>O). We assume that the c values 
change slowly from one presentation to the 
next. Then we can average Equation 2 over 
an ensemble of many presentations, and 
use Equation 1 to express M” in terms of 
the {L;} to obtain the rate of change of 
each c value. Some algebraic 
manipulation’ gives 

k, = 5 Q,, c, + WI + W2 lN PC,] (3) 

where kl,2 are particular combinations of 
the constants al.5. Apart from the deter- 
mined values of kl,*, the constants a1~5 
play no further role in what follows. Here 

Mathematical formulation. This sub- 
section and the next summarize simula- 
tions that are described in detail in my 

M”=a, +ZEjLJC”cJ (1) 

where Cj is the strength of the jth input 
connection to the M cell. Our Hebb-type 
rule is 

(AC,)” = a2 L:M A + a3LY + a&f” + as (2) 

Qil c < (L:-- z) x (L,“- z) > (4) 

is the covariance of the activities of input 
cells i and j, where < . . . > and the 
overbar both denote the ensemble average. 
(For our purposes, z, the ensemble aver- 
age of the input activity at a synapse, can 
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Figure 2. Receptive field map of a computed orientation-selective cell. A point of 
illumination at any position in the plane evokes an output response from the model 
cell that is proportional to the contour value at that position. Positive contour 
values (solid curves) denote an excitatory output response; negative values (dotted 
curves) denote an inhibitory response. Contour values range from - 0.45 to + 0.75 
in steps of 0.30. The peak response (at the receptive field center) is normalized to 
unity. The parameter values that generated this particular orientation-selective cell, 
and the units (rG) of distance along the axes, are given in reference 1. (See Figure 
la, p. 8780). Axes denote distance of illumination point from receptive field center. 

be taken to be the same for all synapses i, 
j.) The appearance of the input covariance 
matrix Q does not mean that there is any 
direct interaction between synapses i and 
j. Q appears simply because the Hebb rule 
causes 6i to depend upon the product 
< LyM”> , and M” in turn depends upon 
all the { Ly } values (via Equation 1). The 
Q matrix will play an important role in 
what follows. 

To prevent c values from becoming 
infinite during the development process, a 
saturation constraint is imposed. Each c 
value is constrained to lie between two 
values c- and c, . In a more biologically 
realistic case, there are excitatory synapses 
that have OZZC<C+ and inhibitory syn- 
apses that have c- CC~ 0. The analysis 
of this case gives the same result. 
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First the connections from layer A to B 
mature, or develop to their final values. 
That is, the initial c values are chosen at 
random, the set of differential equations 
given by Equation 3 (for i = 1,2, . . . , N) 
is solved, using the Qc function that 
applies to layer A activity. (For random 
snow activity in layer A, Q0 is 1 when i 
and j are the same A cell, and 0 otherwise.) 
Knowing the mature c values for the A-to- 
B connections, as well as the Qii function 
for layer A, then allows us to compute the 
Q,j function for the mature layer B. Then 
the development of the B-to-C connections 
is computed, using the Qii function 
appropriate to layer B. By repeating the 
process, we compute in turn the connec- 
tion strengths for successive layers of con- 
nections. 

Simulation results. A few parameters 
for each layer of cells determine the mature 
c values of the cells in that layer. These 
parameters include /cl and kz and the 
breadth of the region in the previous layer 
that provides input to a cell of the develop- 
ing layer. (See Figure 1.) As we shall see, 
the choice of the k,,z values determines 
the mature value of the total connection 
strength tcj of the inputs to the M cell. 

When we explore the parameter space, 
we find that there are a limited number of 
ways each layer can develop. Briefly, we 
find that a sequence of feature-analyzing 
cell types emerges as one layer after 
another matures. 

The first cell type emerges in layer B. 
There is a parameter regime in which each 
c value reaches its excitatory limit c,. In 
this case, each B cell, once it has matured, 
computes the local average of the activity 
in the overlying region of layer A from 
which it receives input. 

Once the B cells have matured in this 
way, nearby B cells have correlated 
activity. Each activity pattern in layer B is 
a blurred image of random snow. If one B 
cell’s activity happens to be “high” at a 
given time, its neighbors’ activities are 
likely to be “high” also. As a result of this 
activity correlation, a new cell type 
emerges in layer C. This center-surround 
cell type’ acts as a contrast-sensitive 
filter-it responds maximally to a bright 
circular spot centered on the cell’s recep- 
tive field, against a dark background. 
Center-surround cells having the reverse 
property-they respond maximally to a 
dark spot on a bright background-also 
emerge. 

The Q function for pairs of center- 
surround cells in layer C determines the 
developmental possibilities for the C-to-D 
connections, and so on. We find that the 
next new type of feature-analyzing cell to 
emerge as we pass to succeeding layers is 
an orientation-selective cell. This cell 
responds maximally to a bright edge or bar 
against a dark background, or the reverse, 
when the edge or bar has a particular 
orientation. The receptive field map for 
such a computed cell is shown in Figure 2. 
This map is a contour plot showing the 
response of the cell to point illumination, 
as a function of the position of the illumi- 
nation in visual space. 

Each orientation-selective cell will 
develop to favor an arbitrary orientation 
if the network contains only feedforward 
connections as in Figure 1. However, if 
lateral connections between nearby cells of 
the orientation-selective cell layer are 
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included in the simulation, then the orien- 
tation preferences of the cells in the layer 
can become organized in certain arrange- 
ments. Cells having similar orientation 
preferences develop to occupy irregular 
band-shaped regions. (See reference 1 and 
the front cover, right side, of this issue.) 

Discussion of the simulations. Center- 
surround cells are a prominent feature of 
mammalian retina. Orientation-selective 
cells emerge in cat and monkey visual cor- 
tex.3’4 lrregular band-shaped regions of 
cells of similar orientation-called orien- 
tation columns-are a prominent feature 
in the orientation-selective cell layers.314 
(Once again, see the front cover, left side.) 
The role that lateral connections in cortex 
play in the formation of orientation selec- 
tivity is at present experimentally unset- 
tled. As we noted, certain primates exhibit 
well-formed orientation selectivity at 
birth, in the absence of any structured vis- 
ual experience. 

Our point is not to suggest that feature- 
analyzing cells-particularly the center- 
surround cells-arise in animals in the 
same way they do in this synthetic net- 
work. As noted previously, the anatomy 
of inter-layer connections in the retina is 
more complex than a simple feedforward 
arrangement. Furthermore, center- 
surround cells can be constructed by a sim- 
ple non-adaptive model in which excita- 
tory inputs from some narrow region, and 
inhibitory inputs from a broader region, 
both converge on a cell. In our simulations 
we assumed that the breadth of the input 
region to a cell was the same for excitatory 
and inhibitory synapses, in order to avoid 
biasing the solution toward the formation 
of a center-surround cell type. 

Our point is rather that a set of progres- 
sively more complex feature-analyzing cell 
types develops in the layered network, and 
that these cell types, and their organiza- 
tion, qualitatively exhibit some of the most 
salient features found in the first few stages 
of mammalian visual processing. The 
results suggest that some properties whose 
origin has been mysterious-such as orien- 
tation selectivity - may have a natural 
explanation in terms of the functioning of 
a Hebb-type development process in a 
layered network. 

Two simple examples of how structured 
input to layer A would affect the simula- 
tion results are worth noting: 

(1) If nearby pixels have correlated 
intensity values, and this is the only impor- 
tant input correlation present, then Q in 
layer A would resemble the Gaussian Q 

that we found in layer B. The subsequent 
development of the model would proceed 
in a way similar to that which we 
described, except that the appearance of 
each feature-analyzing cell type could be 
advanced one layer. 

(2) If layer A is shown an ensemble of 
patterns, each consisting of sinusoidal 
stripes with arbitrary phase and orienta- 
tion, then orientation selectivity can 
develop as early as layer B.’ 

We have assumed, for simplicity, that 
the statistical properties of the ensemble of 
presentations, that is, the covariances Q,,, 
are unchanged or stationary during devel- 
opment. If the ensemble statistics change, 
cells that had reached their apparently 
final mature c values may change these c 
values in accordance with the new ensem- 
ble characteristics. Thus, although we 
always speak of cell development, the pres- 
ent approach is equally applicable to 
studying questions of cell plasticity during 
the life of the animal. 

Hebb rules and 
optim ization properties 

We have seen that even a simple layered 
network with local feedforward connec- 
tions obeying a Hebb-type rule develops a 
sequence of progressively more sophisti- 
cated feature-analyzing properties as we 
pass from one layer to the next. We will 
now examine some remarkable optimiza- 
tion properties of a Hebb-type rule. 

Maximization of output activity vari- 
ance. Consider a cell M  that receives input 
from cells L,, LZ, . . , L,.,. Here and 
later, “input” means local input to cell M, 
not the environmental input to the net- 
work as a whole. Similarly, “output” 
refers to the M cell’s activity value, not to 
the output from the network as a whole. 
Let the M cell’s development be de- 
scribed as in Equations 1-4, with a satu- 
ration constraint on the range of each c 
value. We assume that the ensemble 
statistical properties of the L-cell activities, 
that is, the Q,, function for the L cells as in 
Equation 4, are unaffected by the choice 
of c values. This is true if there is no feed- 
back from M, or the cells it influences, to 
the L cells. It should be a satisfactory 
approximation if the feedback is present 
but is sufficiently weak, although this has 
not been studied quantitatively. 

Define the function 

E=EQ+Ek (5) 

where 

EQ= -(1/2)<(M”-M)‘> 
= -(1/2)W,Q,,w, (6) 

and 

Ek E - k,Ic, - (k2/2N)(ICj)’ (7) 

I have constructed the function E to 
have the property that - a E/ 8 c, = c!, for 
each i. This means that, as the Hebb rule 
causes each of the cvalues to change with 
time, the value of E, as a function of the 
c’s, decreases along a path of locally 
steepest, or gradient, descent. (If ?,>O, 
then aE/ac,<O, so c, increases and E 
decreases with time. If ?,<O, then 
a E/ 8 c, > 0, so c, decreases and E again 
decreases with time.) 

The value of E thus achieves a local 
minimum at cell maturity. Moreover, for 
the cases of interest here-including those 
that lead to the center-surround and 
orientation-selective cell types-this mini- 
mum is a global near-minimum as well.’ 
We therefore will focus on the case in 
which the development process does not 
get stuck in high-lying local minima. This 
appears to be the typical case for a percep- 
tual network exposed to a large ensemble 
of presentations, although it is an empiri- 
cal finding and 1 have not established the 
limits of its validity. 

What is the meaning of E achieving a 
global, or absolute, minimum value? For 
any given value of total connection 
strength Zc,, E is minimized when 
< (M” - n)2 > -the statistical variance 
of M-is maximized. Changing the values 
of the parameters kl,2 adjusts, or tunes, 
the mature value of tc,. The Ek term, 
which is a function of tc, and kl,2 only, 
plays a role similar to a Lagrange mul- 
tiplier term, although Ek is parabolic 
rather than linear in tc,. 

Therefore, the development rule of 
Equation 3 causes a cell to develop so as to 
maximize the variance of its output 
activity, subject to the constraint that the 
total connection strength have a given, 
parameter-determined, valueand subject 
to the saturation bounds for each c value. 
Let us see intuitively what variance max- 
imization means to a perceptual system. 

Consider first a hypothetical M  cell 
whose c values are such that the cell’s out- 
put variance is zero. That is, regardless of 
the input values (L;,L;, . . , Lk) cho- 
sen from the ensemble of presentations, 
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(a) M (b) 

Figure 3. Relationship between networks: (a) a single M cell (with N inputs) of a 
layered self-adaptive network; (b) a Hopfield network with N cells and N(N- 1)/2 
connections. where N = 5. 

the output is always the same. This cell 
would be useless for conveying any infor- 
mation about the environment to later 
parts of the perceptual system. 

On the other hand, if the c values are 
chosen in a different and special way, then 
the M cell’s output value exhibits the 
largest possible spread or variance, consis- 
tent with the constraints on the c’s, as the 
set of input values ranges over its ensem- 
ble. We have shown that a Hebb-type rule 
tends to generate c values satisfying this 
special condition. In an informal sense, 
provided certain conditions are met, the 
Hebb rule acting on our described M cell 
tends to produce an M cell whose output 
activity optimally preserves the informa- 
tion contained in the set of input activities. 
Later, we will make this statement more 
precise, by applying some concepts from 
information theory, and we will modify it 
to accommodate the situation in which 
multiple M cells interact with one another. 

Optimization in another type of neural 
network. Hopfield’ emphasized that the 
dynamics of a neural network can be 
described in some cases by the local 
minimization of a function. An interesting 
mathematical relationship exists between 
the E function defined in Equations 5-7 
and Hopfield’s energy function- 
although the network structure and 
behavior that each describes are very 
different. 
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Once again, our E function is 
E= EQ+ Ek where E. is shown in Equa- 
tion 6. The development rule causes Ep to 
be minimized subject to the constraint that 
ZCj have a specified value and subject to 
the saturation constraints on each c value. 
The arrangement described by Equation 6 
consists of one M cell with Ninputs from 
cells L,, L2, . . . , LN and is shown in 
Figure 3a. The Nx N matrix of elements 
QG is the covariance matrix of the input 
cell activities. The c’s are the connection 
strengths from each input cell to the out- 
put cell. The minimization of E describes 
the development of the c’s under the 
influence of the ensemble of inputs charac- 
terized by the covariance matrix Q. 

In Hopfield’s case,’ as illustrated in 
Figure 3b, there are N cells and the activity 
state of the ith cell is called Vi. Each pair 
of cells is connected with fixed connection 
strength Tiij, so the number of connec- 
tions is of order N2/2, and the energy 
function is 

E’E -(1/2)tit~Tijk’;~ (8) 

The activities V, change with time 
according to a linear summation rule with 
a threshold: Vi increases, unless it is 
already at its upper limit, if tTijVj>O, 
and decreases if ZTijVj<O. If the Ti, 
matrix is symmetric, then the Vi’s change 
so as to decrease the value of E ’ to a local 
minimum. Connection strengths are fixed; 

there is no learning or network develop- 
ment. The dynamical process described by 
Equation 8 is the change in the activities 
{ Vi} from some initial state to a final state 
of locally minimum E ‘. If we want to use 
the network for memory retrieval, a suit- 
able choice of Tij is given by an expression 
that is essentially the covariance of Vj 
and Vjk over the ensemble of memories, 
indexed by k, to be stored. 

Note that E ’ has the identical structure 
as our Ee, if we identify V; with C; and Tij 
with Qij. When T is a covariance matrix, 
Hopfield’s network computes a local mini- 
mum of E ’ using N cells and order N2/2 
connections, explicitly embodying the T 
values. The state for which E ’ is minimal 
is the set of final activities (V,, V2, . . ., 
vN)* 

One cell of our network computes a 
local minimum of the same function, our 
EQ, using Nconnections. The Q function, 
which corresponds to T, is nowhere 
explicitly represented in the network. The 
Hebb rule implicitly responds to the covar- 
iance matrix, Q, as the ensemble of input 
patterns is presented to the M cell. The 
state for which EQ is minimal is not a set 
of activities, but a set of mature connec- 
tion strengths (cl, ~2, . . . , c~). 

Thus, for Tmatrices that are covariance 
matrices, one cell of our network can 
locally optimize the same function as a 
fully connected Hopfield-type network. In 
our network, this optimization process 
consists of developing a final set of c 
values, starting with some initial set of 
values, under the influence of a statistically 
stationary ensemble of input patterns hav- 
ing covariance matrix T. In the Hopfield- 
type network case, the process consists of 
seeking a final set of cell activity values 
starting with some initial set of values, in 
a network whose connection strengths are 
fixed and prespecified to be the T values 
themselves. 

These considerations lead to an interest- 
ing connection, only briefly outlined here, 
between memory retrieval and perception 
in a network model. 

Memory retrieval and perception in a 
network model. If there are sufficiently 
few memory patterns to be stored, relative 
to N, then E’ or EQ will tend to have 
minima at the { V,} or { Ci} values, respec- 
tively, corresponding to those memories. 
Depending upon the initial choice of the 
V’s or c’s, one or another of these mem- 
ory states will be activated or selected. 
In the case of Hopfield’s network, “acti- 
vated” means that the final activity state 
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will match one of the stored memories. In 
the case of a cell in a layered self-adaptive 
network, “selected” means that the final 
set of c values will cause the M cell to be a 
matched filter for one of these memories. 
That is, the mature M cell will respond 
most strongly when presented with the set 
of input activities corresponding to that 
memory. 

If the number of patterns in the ensem- 
ble is large, then the E, function will no 
longer capture details of any one of the 
patterns. The structure of the Ee function 
may become simpler. The global minimum 
of E, will lie at the (c,, c2, . . . ) value 
for which the M cell’s variance is max- 
imized. The mature M cell will function as 
a feature-analyzing cell, rather than as a 
matched filter to a particular memory. The 
particular feature or pattern element to 
which the mature cell will optimally 
respond, such as an oriented edge, need 
not even appear in any of the presented 
patterns. 

Principal component analysis. There is 
a special case in which variance maximiza- 
tion corresponds to an important, and 
widely-used, statistical method for feature 
extraction. This is the case in which the 
output variance is maximized subject to 
the constraint that ZC,~ = 1. Oja6 showed 
that this maximization can be achieved by 
using a particular form of the Hebb rule, 
equivalent to 

i-, a<M”(LY -M”c,)> (9) 

For this expression, we put M”= 1 L,“c, 
and define the activities, subtracting non- 
zero mean values if necessary, so that 
<L:> = 0 for all i. The additional term in 
the Hebb-type rule, proportional to c,, 
causes EC,’ to be close to 1, and no explicit 
constraint needs to be imposed. 

In statistics, principal component anal- 
ysis, or PCA, is a standard method, 
reviewed in Huber,’ for identifying 
“interesting” but unanticipated structure, 
such as clustering, in high-dimensional 
data sets. For example, an economist con- 
fronted with 1000 dimensions of data, 
such as the prices of different commodi- 
ties, may want to know which several fea- 
tures of the data, for example, which 
several linear combinations of the 1000 
quantities, are most salient. 

PCA works as follows. Consider a set of 
data points indexed by n, each point L” 
having coordinates (L;, LI, . . . , Lb). 
For PCA, we compute a vector c for which 
the projection of the set of data points 
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Figure 4. Illustration of principal component analysis. A  cloud of data points is 
shown in two dimensions, and the density plots formed by projecting this cloud 
onto each of two axes 1 and 2 are indicated. The projection onto axis 1 has maxi- 
mum variance, and clearly shows the bimodal, or clustered, character of the data. 

onto the axis parallel to c has maximum 
variance. The projection of L” onto c, 
when X$=1, is just M”=Z,L:c,, and 
the variance of the projected distribution 
is identical to the variance of M  n. 

An example of PCA is illustrated in Fig- 
ure 4. Projecting the cloud of data points 
onto line 1 captures the salient feature of 
the data-that there are two clusters. The 
variance, or spread, of the data points 
along this axis is greater than for any other 
projection axis. Projecting the cloud onto 
line 2 would obscure the cluster structure. 
While the cluster structure is evident in the 
raw data of the two-dimensional plot 
shown here, such structure is often totally 
concealed in high-dimensional data sets, 
until an analysis method such as PCA is 
applied. 

Since the PCA method corresponds to 
choosing c so as to maximize the variance 
of M” subject to Zc,’ = 1, it follows that 
the mature M cell generated by Oja’s ver- 
sion of the Hebb rule performs PCA on its 
set of inputs.6 

Optimal inference. Consider an arbi- 
trary M  cell characterized by a set of c 
values and having the linear response rule 
M” = I,L:c, with <L:> = 0 for all i. 
Suppose we know the c values, and are told 
a particular value of the output, M  “. We 
are asked to estimate the input activities 
G, G, . . . , Lk) for that presentation. 
Let us score any such estimate by 

(1) computing the difference between 
the estimate L: (est) and the true 
value of L: 

(2) squaring this difference, and 
(3) summing this squared error over i. 

Averaging this score over an ensemble of 
presentations gives the mean square error 

MSE = I, < [L: - Ly(est)12 > (10) 

What estimation rule will give the best, 
meaning the minimum, MSE? For a linear 
estimation rule of the form L:(est)= 
g,M”, where we want to know what g 
values to use, the answer is found by 
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minimizing MSE with respect to each of 
the g,‘s. This is easily done by differentiat- 
ing MSE. It is also a simple case of the 
Gauss-Markoff theorem,* which applies 
more generally to the optimal estimation 
of a set of inputs given a set of outputs, 
rather than just one output. The result is 

LT(opt est) = 

M” X (4 Q, cj)/(Gjc~Q,C,) (11) 

The MSE corresponding 
estimate is then 

to this optimal 

MSE(opt) = 1, < [L,I-- Ll(opt est)12 > 
=Z,<(Ljy2> -H (12) 

where 

HE [~:i(tjQijCj)‘l/(~l~jCCiQl,C,) (13) 

Expressed in matrix form, with c denoting 
the column vector (ci, c2, . . . ) and Q 
denoting the matrix (Qij), we have HE 
(cTQQc)/(cTQc), where the superscript T 
denotes the matrix transpose. 

The calculation so far involves a stan- 
dard use of optimal estimation theory.* 
The linear filter, represented here by the set 
of c values, is specified. The result of a 
measurement using the filter-that is, the 
output value-is given. The task is to 
reconstruct the input values with minimum 
error, using a simple mean squared error 
criterion. 

We now go beyond this simple frame- 
work to ask’: For what linear filter-what 
set of c values-is this minimum-error 
reconstruction the most accurate? That is, 
what choice of c’s minimizes MSE(opt) of 
Equation 12? 

Since the first term on the right-hand 
side of Equation 12 is independent of the 
c’s, minimizing MSE(opt) is accomplished 
by maximizing H. The mathematical con- 
dition for this to occur is that the vector c 
be an eigenvector of Q  having maximal 
eigenvalue. This is identical to the condi- 
tion that c needs to satisfy in order for the 
M cell to perform PCA on its input values. 

Therefore the PCA condition and the 
principle of optimal inference-namely, 
that MSE(opt) be minimized, or H be 
maximized-lead to the same set of c 
values. A Hebb rule of the form of Equa- 
tion 9 generates an M cell that satisfies 
both conditions. In the presence of other 
constraints, or additional cost terms, there 
is no guarantee that PCA and H- 
maximization are equivalent, since the 
PCA principle maximizes the quantity 

(cTQc)/(cTc) which is not identical to the 
expression for H in Equation 13. 

Optimization in the presence of process- 
ing noise and constraints on output vari- 
ance. We have identified several 
optimization properties related to the cell’s 
output variance. Suppose, however, that 
for some reason the variance is itself con- 
strained. For example, the output activity 
may be confined to lie within some oper- 
ating range. This is a biologically plausi- 
ble situation. In this case, what is 
optimized by a suitable Hebb-type rule? 
We will discuss this case for a particular 
processing model, giving only the main 
results and omitting the details. 

Suppose the signal Lj” on the jth input 
line or connection is corrupted by noise, 
vJ: where v; has a mean of zero and a var- 
iance B, and is uncorrelated both with the 
noise on other input lines and with any of 
the input signals LT. The cell computes the 
weighted sum x~tj(L,“+ v;)cj. The vari- 
ance of x is the sum of two terms: the var- 
iance due to the signal in the absence of 
noise, &, Qicic.; and the variance due to 
the noise, BX j. Consider a suitable syn- ci 
aptic modification rule in which ci con- 
tains a term of the form < L;x> . This 
rule causes the model cell to develop such 
that the variance of x due to the signal is 
maximized relative to the variance due to 
the noise. This type of signal-to-noise 
optimization property can also emerge 
when the cell’s output M  is a monotonic 
nonlinear function of x, such as a sigmoid 
function, if the synaptic modification rule 
is of the form described. 

Adaptive signal processing. Returning 
to the case of a linear-response model neu- 
ron, suppose we wish to train a linear cell 
to respond to each of a set of prescribed 
input vectors by generating an output that 
best matches a prescribed desired output. 
An input vector is denoted L”=(L;, L2, 
. . . , Lh) and each desired output is a 
scalar number M&,. The actual output is 
M” =ZEjLjnCj where each < Ly> =0 and 
the optimal c values are to be determined 
by a learning process. A mean square mea- 
sure of error is used: 

MSE ’ = < (M”- MLJ2 > (14) 

where < . . . > again indicates the 
ensemble average. MSE ’ is a minimum 
when the c values are chosen to satisfy 
< M& Ly> = 4 Qdcj for all i. (Recall that 
Qti= < L,“Ly > .) The least mean square, 
or LMS, algorithm of Widrow and 

Hoff” uses an estimate of the gradient of 
MSE’ and in effect performs gradient 
descent to compute the optimal c values. 
An ensemble-averaged form of the algo- 
rithm can be written as 

t;~:<L;(M&-tjL,“cj)> (15) 

Equations 14 and 15 give an objective 
function to be minimized and an algorithm 
for a supervised learning process. Both 
the inputs and the desired outputs are 
presented to the cell, and the error term 
(M&-M”)-the amount by which the 
actual output differs from the desired 
output-is fed back to change the cvalues 
until the mean square error is minimized. 

Our optimal inference criterion, 
namely, the minimization of the objective 
function of Equation 12, and a Hebb-type 
rule that implements it (Equation 9) are 
formally similar to Equations 14 and 15. 
But the optimal inference criterion pro- 
vides a method for unsupervised learning. 
The criterion does not make any use of a 
desired output; it simply states that the M 
cell should have the property that know- 
ing its output activity value allows one to 
infer the input activities with greatest pos- 
sible accuracy. 

Information theory 
and the principle of 
maximum information 
preservation 

For a single M  cell receiving inputs from 
a given set of L cells, we have seen that, for 
a particular Hebb rule given in Equation 
9, knowledge of the output activity value 
allows inference of the input values with 
greatest accuracy, in the sense of minimum 
mean squared error. For more general 
Hebb-type rules, we found that the vari- 
ance of the output activity was maximized 
subject to various constraints. This result 
led us to suggest that, at least in an intui- 
tive sense, a Hebb rule may act to gener- 
ate an M cell whose output activity 
preserves maximum information about 
the input activities, subject to constraints. 

We will now make this notion of maxi- 
mum information preservation more pre- 
cise, and will extend it to the case of an 
entire layer of M  cells, by introducing 
some concepts from information theory. 
The goal is to see what this principle 
implies for the development of each layer 
of a perceptual system. That is, given the 
statistical properties of the ensemble of 
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input patterns at layer L, and certain con- 
straints, what particular processing func- 
tions do the connections from layer L to 
layer M, and within layer M, develop to 
implement? 

Shannon information. We will regard 
each presentation of real-valued inputs 
L=(L,, L2, . . . , L,) as a message, 
where L, denotes the activity of the ith L 
cell in the layer. We omit the n superscripts 
for clarity. Strictly speaking, even one real 
number carries an infinite amount of 
information. To avoid encountering 
expressions of the form, m--03, and 
because infinite precision is physically and 
biologically meaningless, we will think of 
the N-dimensional space of the L vectors 
as being divided into small boxes. Each 
box is labeled by its location L. Two mes- 
sages are regarded as identical if they lie in 
the same box. In the end, we will pass to 
the continuum limit, and the sums will 
become integrals. 

Given an ensemble of messages, let P(L) 
be the probability that a randomly chosen 
message lies in box L. Shannon” showed, 
in a classic paper, that the information 
conveyed by sending a message that lies in 
box L is Z(L) = [ - In P(L)]. The average 
information conveyed per message is 
< [-lnP(L)] > = -X,P(L)lnP(L), 
where < . . . > is the usual ensemble 
average. If the base-2, rather than natural, 
logarithm were used here, the information 
would be measured in bits. 

Now suppose each input presentation L 
generates a set of output values, denoted 
by the vector M, via some known compu- 
tation. Suppose that we are told the value 
of M-or, more strictly, which discrete 
box M lies in. (In general, M  will not be 
uniquely determined by L because noise 
may be introduced in the computation of 
M.) How much additional information 
would we need to reconstruct the input 
message L that gave rise to M? (Shannon 
calls the ensemble average of this amount 
of additional information the equivo- 
cation.) 

The answer is Z&L) = [-In P(LJM)], 
where P(LIM) is the conditional probabil- 
ity of the input message lying in box L 
given that the output lies in box M. There- 
fore the amount of information that 
knowing M  conveys about L is the differ- 
ence, I(L) - IhI = ln[P(LIM)/P(L)]. 
The ensemble average of this quantity is 
the rate R, per message, of transmission of 
information from the cell’s inputs to its 
output. This is the average amount of 
information that knowing M conveys 

about L. We have 

R = < ln[P(LIM)/P(L)] > (16) 

We have a standard identity P(LIM) 
P(M) = P(L,M) = P(M(L)P(L), where 
P(L,M) is the joint probability that the 
input lies in box L and the output lies in 
box M. Using this gives 

R = < ln[P(MIL)/P(M)] > 
= - <In P(M)> + <In P(MIL)> 
= <I(M)> - <I,(M)> (17) 

The right-hand side is the ensemble 
average of the total information conveyed 
by M, minus the information that M  con- 
veys to one who already knows L. This sec- 
ond term is the “information” that M  
conveys about the processing noise, rather 
than about the signal L. 

Maximum information preservation. 
Let us now state the proposed principle of 
maximum information preservation for 
each layer, or processing stage, of a per- 
ceptual network: Given a layer L of cells, 
and the stationary ensemble statistical 
properties of the signal activity values in 
the layer, and given that layer L is to pro- 
vide input to another cell layer M, the 
transformation of activity values from L 
to M  is to be chosen such that the rate R of 
information transmission from L to M  is 
maximized, subject to constraints and/or 
additional cost terms. These constraints or 
costs may reflect, for example, biochemi- 
cal and anatomical limitations on the for- 
mation of connections, or on the character 
of the allowed transformations. 

The formulation of this principle arose 
from studying Hebb-type rules and recog- 
nizing certain optimization properties to 
which they lead for single M  cells. Once 
formulated, however, the principle is 
independent of any particular local algo- 
rithm, whether Hebb-related or otherwise, 
that may be found to implement it. Let us 
explore 

(1) the consequences of the principle 
for some simple cases; 

(2) how the principle might be imple- 
mented; and 

(3) how it may fit within a broader view 
of neural development. 

A single M  cell. Under certain condi- 
tions, maximizing the output activity var- 
iance of the M cell maximizes the Shannon 
information rate R. We illustrate this for 
a particularly simple but instructive case. 
The argument can be made somewhat 

more general than this, but it is not true 
that maximum information rate and max- 
imum activity variance coincide when the 
probability distribution of signal values is 
arbitrary. 

Suppose the M cell receives inputs from 
a set of L cells L,, L2, . . . , LN, and that 
the M cell’s output in the presence of 
processing noise has the form 

M”=(E,L;c,)+v” (18) 

Here rr indexes the particular set of input 
and output values, so that if L is repeated 
but the output M  is different, owing to 
noise, this counts as a different set of 
input-output values. The quantity vn is the 
noise, a random variable differing from 
one presentation to the next. Suppose that 

(1) M  has a Gaussian distribution, 
with variance denoted by I/; 

(2) v has a Gaussian distribution with a 
mean of zero and variance denoted 
by B; and 

(3) v is uncorrelated with any of the 
input components; that is, < uL, > 
= 0 for all i. 

Then, omitting the details, we find that 
the information rate is 

R=(l/2) ln(V/B) (19) 

For a given noise variance, B, this rate 
is maximized by maximizing the output 
variance Vof the M cell. Note that V/B is 
essentially a signal-to-noise ratio. 

Suppose that the noise model consists 
instead of independent Gaussian noise, v,, 
being introduced on each input line i, 
where each v, has variance B. Then 
M” = t,(L: + u:)c,, and the informa- 
tion rate is found to be R = (l/2) ln[ V/ 
(BIc2i)]. In this case, R is maximized for 
fixed B when (V/Xcf) is maximized- 
that is, when the connection strengths are 
chosen so as to perform principal compo- 
nent analysis on the cell’s inputs. 

Redundancy and diversity. Suppose 
there is an arbitrary number of L cells but 
just two coupled linear M  cells. Each M 
cell’s output is some linear combination of 
the L cell’s activities: 

M;=(t,tliLy)+~; (20) 

M;=(t,t,,L;)+v; (21) 

Each noise term is Gaussian and of var- 
iance B, the noise terms for the two M cells 
are uncorrelated with each other, and each 
noise term is uncorrelated with any of the 

March 1988 113 



L cell activities. We treat the case in which 
MI and M2 have Gaussian distributions, 
with<M;>=<M;> =O.Ourtaskis 
to determine what values of the tni’S lead 
to the maximum information being 
preserved during the processing of L-cell 
activities to give M-cell output activities. 

Note that the t,,‘s do not in general 
stand for the strengths of particular con- 
nections. There may be both feedforward 
and lateral (M-to-M) connections whose 
joint effect, possibly over several time 
steps, is to produce the M-cell outputs of 
Equations 20 and 21. Our concern here is 
not with the particular connection 
strengths, nor with the development rule 
that may implement them, such as a Hebb- 
type rule, but rather with understanding 
what cell response properties-what t,i 
values-are induced by the principle of 
maximum information preservation. 

Omitting details of the proof, the result- 
ing information rate for this case is 

R = (l/2) ln(Det Q”) - In B (22) 

where the elements of the 2 x 2 covariance 
matrix QM are Qrm = <M”, Mk> and 
“Det” denotes the determinant. We find 

Det Q”=B2+B(W,+ IV,) 
+ w Wz(l -e:2, (23) 

where W,, is the output variance of cell M, 
in the absence of noise, and e12 is the 
correlation coefficient of the activities of 
M  cells 1 and 2, also in the absence of 
noise. 

To maximize R, given B, we must max- 
imize Det Q”. When B is large, the third 
term on the right-hand side of Equation 
23, which is independent of B, is small 
compared with the second term, which is 
of order B. In that case, maximizing Det 
QM means maximizing (WI + W,). If no 
constraint prevents us, we can achieve this 
maximization by maximizing WI and W2 
separately. But this means constructing 
each M cell so that its output variance, 
which is W,, in the absence of noise, or 
W, + B in the presence of noise, is max- 
imized. This is exactly what we found to be 
the optimum solution when there is only 
one M cell. (See Equation 19.) 

If the noise B is smaller, then the third 
term becomes relatively more important. 
The rate R is then maximized by making 
an optimal tradeoff between keeping WI 
and W, large, and making the responses 
of the two M cells uncorrelated. 

We have thus found that, depending 
upon the noise level, there is competition 
between the value of having redundant M  

cell responses, which mitigate the 
information-destroying effects of noise, 
and the informational value of having 
different cells extract different linear com- 
binations of the input. A high noise level 
favors redundancy. In this case, both M 
cells compute the same linear combination 
of inputs, if there is only one such combi- 
nation that yields maximum output 
activity variance. A lower noise level 
favors diversity of response. In this case, 
the M cells compute different linear com- 
binations of the L cell activities, even 
though each M cell’s output variance may 
be reduced as a result of this choice. 

To make this more concrete, consider a 
simple example. There are two L cells, and 
the Q matrix for L cell activity has 
Qi,=Qzz=l and Qlz=Q2,=q with 
0 < q < 1. We arbitrarily impose the con- 
straint that tf, + ti2 = 1 for each M cell 
(n = 1, 2). 

The solution that maximizes the pres- 
ervation of information then has t,, = t22 
and t12= tz,, and the values of tll and ti2 
are given in Figure 5 as a function of B and 
q. For large B, both M cells receive the 
same linear combination of inputs: 
(L, +L2)/\/2. For smaller B, the cells 
measure different linear combinations of 
L, and L2. In the limit as B approaches 
zero, one M cell receives input only from 
cell Li and the other only from L2. 

A layer of M  cells with nonlinearity and 
lateral connections. What does the princi- 
ple of maximum information preserva- 
tion, which we shall call the infomax 
principle, imply qualitatively in this more 
general case? Maximizing R means that we 
attempt to (1) maximize the total informa- 
tion conveyed by the output message M, 
and (2) minimize the information that M  
conveys to one who already knows the 
input message L. These criteria are related, 
but not equivalent, to the property of 
encoding signals so as to reduce redundan- 
cies present among the inputs to the per- 
ceptual system. The general idea that 
information theory can be useful for 
understanding perception is an old one. 
Significant contributions were made by 
Attneave in 1954, Barlow in the 1950s and 
196Os, and Marr in 1970. Much of this 
work has focused on the role of redun- 
dancy reduction. This property is one, but 
only one, aspect of the infomax principle. 
For example, we have seen that infomax 
also leads to the introduction of redun- 
dancy when this is useful in countering the 
effects of noise. 

I have analyzed the qualitative conse- 

quences of the infomax principle in some 
very simple models.12 The results show 
that the principle can, under certain con- 
ditions, lead to L-to-M transformations 
with the following properties: 

l Topographic mapping from layer L 
to layer M, when the spatial extent of 
lateral connections within layer M  is 
assumed to be limited. That is, near- 
neighbors in L tend to map to near- 
neighbors in M. 

l Map distortions, in which a greater 
number of M  cells tend to represent 
the types of layer-L excitation pat- 
terns that occur more often. 

l The infomax principle selects which 
features of the input signals are rep- 
resented in layer M. Features having 
relatively high signal-to-noise ratios 
are favored. This is the extension of 
our previous redundancy-diversity 
result to the full-layer case. 

l Orientation-selective cells, and the 
arrangement of such cells in orienta- 
tion columns, can emerge for some 
very simple types of model input. 

l When time-delayed information is 
made available to the layer, the info- 
max principle can cause M cells to 
extract and encode temporal correla- 
tions, in a manner similar to the 
extraction of spatial correlations. 

I must emphasize that much work is 
required to determine the consequences of 
the infomax principle for cases involving 
more biologically realistic patterns of 
activity. 

Discussion 
From a simplified set of assumptions-a 

linear summation response, a simple 
Hebb-type rule having a covariance form, 
and feedforward connections only-we 
derived an optimization principle for the 
development of a single cell. This princi- 
ple states that the mature M cell is such that 
its output activity variance is maximized 
subject to constraints. More generally, we 
can have cost terms instead of, or in addi- 
tion to, constraints. Then the function 
maximized involves both the variance and 
the additional cost function. 

This led us to infer a proposed principle 
of maximum information preservation, 
subject to constraints. It is equivalent to 
variance maximization in some simple 
cases, but it has a much broader scope. For 
example, it can be applied to cases in which 
a layer of L cells provides input to an entire 
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layer of M  cells, with lateral as well as feed- 
forward connections. It can likewise apply 
to cases in which the response function is 
not necessarily linear. 

The consequences of this proposed prin- 
ciple are only beginning to be explored. 
One set of issues that needs clarification is 
the choice of biologically appropriate con- 
straints and cost terms. A second, related, 
issue involves the choice of algorithms, 
whether of Hebb type or otherwise, that 
control the development of feedforward 

‘and lateral connections so as to implement 
the optimization principle. While much 
work needs to be done, I suggest that this 
principle, or something like it, may play an 
important role in determining the charac- 
ter of perceptual processing at least in its 
early stages, where there is a chance that 
feedback influences may not affect the 
development of feature-analyzing func- 
tion in an essential way. Possibly the prin- 
ciple may play some role even in the 
presence of significant feedback, but it is 
not clear at this time how best to analyze 
this case. 

What might we expect to be the charac- 
ter of a layer of cells developing according 

to the principle of maximum information 
preservation, for cases of biological 
interest? Although the necessary calcula- 
tions for sufficiently realistic cases have 
not yet been carried out, we can speculate 
on the outcome. 

Suppose there is a constraint on the dis- 
tance within layer M  over which the 
activity of one M cell can affect another. 
There might be, for example, a constraint 
on the length of lateral connections. Sup- 
pose also that each region of layer M  
“sees”, or receives input from, only a 
limited region of layer L, and that nearby 
regions of M  “see” nearby regions of L. 
Then, if the noise variance B is large, and 
there are not many M cells that “see” the 
same set of L cells, we might find that each 
M cell develops so as to maximize its 
activity variance, and performs processing 
that is redundant with that of many of its 
neighbors. 

On the other hand, if B is smaller, or 
there are a large number of M  cells that 
“see” the same L region, we may expect 
that the M cells in a region do not all per- 
form the same processing function on the 
inputs from the L layer. Instead, they 
might span a range of feature-analyzing 
properties, each of which has a moderately 
high variance. 

In the visual system of cats and mon- 
keys, there are multiple layers of center- 
surround cells, followed by layers of 
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Figure 5. Values of the coefficients tni that maximize the preservation of informa- 
tion from layer L to M, for a simple case with two L and two M  cells. Each M  cell 
output (see Equations 20 and 21) includes random noise having variance B, and q is 
the correlation, or covariance, of the activities of the two L cells. For 
x=Bq/(l - q’)k 1, both M  cells redundantly compute the same linear combination 
of the L cell activities (all tni = l/$2). For x< 1 , the optimal t values satisfy tll = 
t22 and tlz = t21, where the upper curve gives tll and the lower curve gives tl2, or the 
reverse. The curves for x< 1 are given by y= (1/2)[(1 +~)“~k(l -x)“~]; this is de- 
rived by maximizing Det p”. (See Equation 23.) 

orientation-selective cells. The orientation- 
selective cells begin at a different layer in 
cats than in monkeys. It is possible that, in 
response to the ensemble of inputs seen by 
a particular layer, the layer can develop 
either center-surround or orientation- 
selective cells, as occurred in our previous 
model simulations. ’ Perhaps a parameter 
such as the noise level B “tunes” for 
redundancy or diversity of response. 
Redundancy could favor center-surround 
cell formation, with many cells perform- 
ing substantially the same processing func- 
tion. Diversity could favor the formation 
of orientation-selective cells spanning the 
entire range of orientation preferences 
within each region of the layer. (Of a group 
of cells comprising all orientation prefer- 
ences, only a small fraction will fire when 
presented with an oriented edge of illumi- 
nation.) Hubel and Wiesel discovered3B4 
that orientation-selective cells are 
arranged, within a cortical layer, so that 
each small region of cortex (~1 x 1 mil- 

limeter) contains the “machinery” for 
analyzing substantially all edge orienta- 
tions seen by either eye within a small 
region of visual space. Perhaps the prin- 
ciple of maximum information preserva- 
tion, combined with limits on lateral 
interaction distance, can account for this 
efficient organization. 

Local algorithms. The infomax princi- 
ple is stated in terms of maximizing a com- 
plicated expression (see Equation 16). Is 
there an algorithm or process that deals 
with much simpler quantities and 
computations-local to each cell or pair of 
connected cells in a network-and yet 
implements the infomax principle, at least 
approximately? 

I have found12 that, for some simple 
cases, a Hebb-related algorithm developed 
by Kohonen” implements some of the 
qualitative features required by the info- 
max principle. This algorithm was devel- 
oped to show how lateral connections can 
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induce topographic order in a simple 
model, and makes no reference to noise or 
information content. These results suggest 
that it may be possible to devise a local 
algorithm that more fully embodies the 
requirements of the infomax principle. 

The relationship between the principle 
and such an algorithm would be com- 
plementary. The principle would suggest 
what the function of the algorithm, and 
the lateral connections it describes, might 
be-that is, what role the processes and 
connections might serve in the construc- 
tion of a perceptual system. The algorithm 
would show how a complex optimization 
principle could be implemented by a net- 
work of cells that individually have little 
computational power. 

Although I have focused on algorithms 
that perform activity-dependent modifica- 
tion of connections, other types of 
mechanisms may be used to implement a 
given optimization principle. Biochemical 
cell-cell adhesion markers, chemical or 
other gradients that may help to establish 
topographic maps, particular cell types 
that implement complex types of connec- 
tivity (as in the retina), and other mechan- 
isms may all play a role. An organizing 
principle by itself does not determine the 
many design details that a particular 
system-biological or synthetic-may use 
to implement it. 

Infomax and perceptual data. Why 
might it be important for a perceptual sys- 
tem to maximize the amount of informa- 
tion preserved from one layer to the next? 

Presumably, one goal of a perceptual 
system is to provide the brain with the 
means of discriminating different environ- 
mental situations that may demand differ- 
ent responses by the animal. 

For a very simple network with only a 
couple of layers of processing from 
environmental input to motor output, we 
could imagine using some sort of super- 
vised learning mechanism. The mecha- 
nism would pair inputs with the desired 
output responses and adjust the connec- 
tion strengths accordingly. Such a process 
involving more than a few layers, however, 
appears biologically implausible, and its 
performance may scale poorly as the num- 
ber of layers is increased. 

In a complex network, or in an animal’s 
brain, it is totally unclear how a compo- 
nent layer is to “decide” what transforma- 
tion its connections should perform+we 
assume that the layer needs to “know” 
what environmental features are impor- 
tant for the animal to respond to. This is 

the classic artificial intelligence credit 
assignment problem: if the final output 
from a complex system is correct, which 
connections should be rewarded or 
strengthened? 

The approach we propose avoids this 
problem. Instead of requiring that a con- 
nection or layer “know about” the ulti- 
mate goals of the animal, we use only local 
information. The information that reaches 
a layer is processed so that the maximum 
amount of information is preserved. We 
have seen that this does not in general lead 
to a trivial one-to-one identity mapping, in 
which each M cell receives input from only 
one L cell. In general, the identity mapping 
is not a solution that maximally preserves 
information, owing to the role of noise in 
our model. Instead, each M cell tends to 
respond to features that are statistically 
and information-theoretically most signif- 
icant, in a sense similar to that of principal 
component analysis. Applying the princi- 
ple of maximum information preservation 
to each layer of processing in turn, results 
in the emergence of a sequence of feature- 
analyzing functions. 

The following analogy may help you to 
see intuitively how the process works. 
Imagine a person in an organization, 
whose job is to make the most informative 
possible summary of the data that he 
receives each week. The type of data he 
receives depends upon the environment 
external to the organization, the structure 
of the organization (what “layer” he is 
part of), and various constraints. Over 
time, he finds that a particular represen- 
tation of information-for example, 
graphical plots involving various 
variables-serves him best in preparing his 
summary. If he is allowed to interact with 
others in his “layer”, the criterion can be 
broadened (as we did for the cells) to state 
that the composite output of his layer 
should be as informative as possible. 

Note that some set of processing func- 
tions will end up being provided by this 
person’s “layer”, without the workers 
needing to know either what the goals of 
the entire organization are, or what infor- 
mation is deemed most important by their 
superiors in later “layers”. 

In both the organizational analogy and 
the real network, there is no need for any 
higher layer to attempt to reconstruct the 
raw data from the summary. The point is 
rather to enable the higher layers to use 
environmental information to dis- 
criminate the relative value of different 
actions. If the needed information has 
been lost at intermediate stages, it cannot 

be used. If a local optimization principle 
is to be used-one that does not attempt to 
take account of remote high-level goals- 
then we do not know what particular 
information is going to be needed at high 
levels. Since we don’t know what informa- 
tion we can afford to discard, it is reasona- 
ble to preserve as much information as 
possible within the imposed constraints. 
The principle of maximum information 
preservation thus appears to be an 
extremely natural and attractive one to use 
in the construction of a layered perceptual 
system. 

Evolution and infomax. The infomax 
principle may determine what transforma- 
tion each layer of a given network will 
implement. However, it does not specify 
the “gross architecture” of the network; 
that is, which layers provide input to which 
other layers. Nor does it specify the vari- 
ous parameters that may affect layer devel- 
opment, such as noise level, the allowed 
range of lateral connections, and so on. 
These aspects of the design may be deter- 
mined by biological evolution, or by other 
principles not yet identified. 

For an analogy, think of an electronic 
circuit designer who is not free to modify 
the properties of the components he or she 
uses, but who can connect them to form a 
variety of circuits. In the case of our pro- 
posed principle, each “component” is an 
entire cell layer, and the infomax principle 
determines that layer’s behavior given a 
particular gross architecture or “circuit 
design”. Thus evolution can “close the 
loop” on the design process, favoring the 
survival of organisms whose perceptual 
systems are well-adapted to their envi- 
ronment . 

There is a separate and important evolu- 
tionary function that a generic principle 
for the development of a perceptual net- 
work layer-whether it be infomax or 
some other principle-can serve. Suppose 
that an evolutionary mutation produces a 
modified eye, or merges auditory signals 
into the visual pathway at some new point. 
If there were no generic principle for layer 
development, we might imagine that 
mutations would have to occur simultane- 
ously in the processing function of several 
layers, for those layers to be able to use the 
novel input properly. But if there is such 
a generic principle-one that applies to 
each layer regardless of what type of input 
reaches it-then the novel input will auto- 
matically be processed in accordance with 
that principle. This suggests that the exis- 
tence of a generic principle may greatly 
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increase the likelihood of a mutation being 
adaptive. 

A broader context. Other complex sys- 
tems, besides neural networks, pose 
challenges similar to those we have dis- 
cussed. How might complex structures 
and behaviors that may appear goal- 
oriented emerge from relatively simple 
local rules? We have seen that a local 
dynamical rule of Hebb type, acting at 
synapses, leads to an optimization 
principle-variance maximization-at the 
level of the whole cell. This suggested an 
optimization principle-maximum infor- 
mation preservation-that may apply at 
the level of an entire layer. From the stand- 
point of information theory, we may find 
that the immune response system and bio- 
logical evolution, among other complex 
systems, have certain abstract similarities 
to the process of neural development and 
plasticity, although the dynamical rules 
and the substrates upon which they act are 
quite different. 

A great deal of work remains to be 
done, if we are to take this or 
some other proposed organizing 

principle, extract testable predictions from 

it, and determine its scope and limitations. 
We need to identify and test such princi- 
ples, in order to complement and help to 
focus the enormous amount of detail being 
revealed by progress in experimental neu- 
roscience. The study of such principles 
may also provide the understanding 
needed to develop synthetic perceptual sys- 
tems that require no explicit pro- 
gramming. 17 
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