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Intelligence as an Emergent Behavior; or, The Songs of Eden 
W. Daniel Hillis 

     
Sometimes a system with many simple components will exhibit a behavior of the whole that seems 

more organised than the behavior of the individual parts. Consider the intricate structure of a snowflake. 
Symmetric shapes within the crystals of ice repeat in threes and sixes, with patterns recurring from place to 
place and within themselves at different scales. The shapes formed by the ice are consequences of the local 
rules of interaction that govern the molecules of water, although the connection between the shapes and the 
rules is far from obvious. After all, these are the same rules of interaction that cause water to suddenly turn 
to steam at its boiling point and cause whirlpools to form in a stream. The rules that govern the forces 
between water molecules seem much simpler than crystals or whirlpools or boiling points, yet all of these 
complex phenomena are somehow consequences of those rules.  Such phenomena are called emergent 
behaviors of the system. 

It would be very convenient if intelligence were an emergent behavior of randomly connected neurons 
in the same sense that snowflakes and whirlpools are emergent behaviors of water molecules. It might then 
be possible to build a thinking machine by simply hooking together a sufficiently large network of 
artificial neurons. The notion of emergence would suggest that such a network, once it reached some critical 
mass, would spontaneously begin to think. 

This is a seductive idea because it allows for theh possibility of constructing intelligence without first 
understanding it. Understanding intelligence is difficult and probably a long way off, so the possibility that 
it might spontaneously emerge from the interactions of a large collection of simple parts has considerable 
appeal to the would-be builder of thinking machines. Unfortunately, that idea does not suggest a practical 
approach to construction. The concept of emergence in itself offers neither guidance on how to construct 
such a system nor insight into why it would work. 

Ironically, the apparent inscrutability of the idea of intelligence as an emergent behavior accounts for 
much of its continuing popularity. Emergence offers a way to believe in physical causality while 
simultaneously maintaining the impossibility of a reductionist explanation of thought. For those who fear 
mechanistic explanations of the human mind, our ignorance of how local interactions produce emergent 
behavior offers a reassuring fog in which to hide the soul. 

There has been a recent renewal of interest in emergent behavior in the form of simulated neural 
networks and connectionist models, spin glasses and cellular automata, and evolutionary models. Each of 
these is a model of some real system. For neural networks and connectionist models, the system being 
modeled is a collection of biological neurons, such as the brain; for spin glasses it is molecular crystals. 
Cellular automata and evolutionary models are based on the ontogenesis and phylogenesis of living 
organisms. In all of these cases, both the model and the system being modeled produce dramatic examples 
of emergent behavior. 

Most of these models are not new, but interest in them is being stirred because of a combination of 
new insights and new tools. The insights come primarily from a branch of physics called dynamical 
systems theory. The tools come from the development of new types of computing devices. Just as we 
thought of intelligence in terms of servomechanism in the 1950s, and in terms of sequential computers in 
the sixties and seventies, we are now beginning to think in terms of parallel computers, in which tens of 
thousands of processors work together. This is not a deep philosophical shift, but it is of great practical 
importance, since it is now possible to study large emergent systems experimentally. 

Inevitably, antireductionists interpret such progress as a schism between symbolic rationalists, who 
oppose them, and gestaltists, who support them. I have often been asked which “side” I am on. Not being a 
philosopher, my inclination is to focus on the practical aspects of this question: How would we go about 



constructing an emergent intelligence? What information would we need to know in order to succeed? How 
can this information be determined by experiment? 

The emergent system that I can most easily imagine would be an implementation of symbolic thought 
rather than a refutation of it. Symbolic thought would be an emergent property of the system. The point of 
view is best explained by the following parable about the origin of human intelligence. As far as I know, 
this parable of human evolution is consistent with the available evidence (as are many others), but because 
it is chosen to illustrate a point, it should be read as a story, not as a theory. It is different from most 
accepted theories of human development in that it presents features that are measurable in the archaeological 
records—such as increased brain size, food sharing and neoteny—as consequences rather than causes of 
intelligence. 

Once upon a time, about two and a half million years ago, there lived a race of apes that walked 
upright. In terms of intellect and habit they were similar to modern chimpanzees. The young apes, like 
young apes today, had a tendency to mimic the actions of others. In particular, they had a tendency to 
imitate sounds. If one ape shrieked “ooh, eeh, eeh,” another would repeat “ooh, eeh, eeh.” Some sequences 
of sounds, or "songs", were more likely to be mimicked than others. 

Let us ignore the evolution of the apes for the moment and consider the evolution of the songs. Since 
the songs were replicated by the apes, and since they sometimes died away and were occasionally combined 
with others, we may loosely consider them (very loosely) a form of life. They survived, bred, competed 
with one another, and evolved according to their own criterion of fitness. If a song contained a particularly 
catchy phrase that caused it to be repeated often, then that phrase was likely to be incorporated into other 
songs. Only songs that had a strong tendency to be repeated survived. 

The survival of a song was only indirectly related to the survival of the apes; it was more directly 
affected by the survival of other songs. Since the apes were a limited resource, the songs had to compete 
with one another for a chance to be sung. One successful competition strategy was for a song to specialize; 
that is, for it to find a particular niche in which it was apt to be repeated. Songs that fit particularly well 
with specific moods or activities of apes had a special survival value for this reason. (I do not know why 
some songs fit well with particular moods, but since it is true for me, I do not find it hard to believe that it 
was true for my ancestors.) 

Before songs began to specialize they were of no particular value to the apes. In a biological sense the 
songs were parasites, taking advantage of the apes' tendency to imitate. As songs became specialized, 
however, it became advantageous for apes to pay attention to the songs of others and to differentiate 
between them. By listening to songs, a clever ape could gain useful information. For example, an ape could 
infer that another ape had found food or that it was likely to attack. Once the apes began to take advantage 
of the songs, a symbiotic relationship developed: songs enhanced their own survival by conveying useful 
information to apes; apes enhanced their own survival by improving their capacity to remember, replicate, 
and understand songs. Thus the blind forces of evolution created a partnership between the songs and the 
apes that thrived on the basis of mutual self-interest. Eventually this partnership evolved into one of the 
world's most successful symbionts: the human race. 

Unfortunately, songs do not leave fossils, so unless some natural process has left a phonographic trace, 
we may never know if the preceding story describes what really happened. But if the story is true, the apes 
and the songs became the two components of human intelligence. The songs evolved into the knowledge, 
mores, and mechanisms of thought that together are the symbolic portion of human intelligence. The apes 
became apes with bigger brains, perhaps optimized for late maturity so that they could learn more songs. 
Homo sapiens is a cooperative combination of the two. 

It is not unusual in nature for two species to live together so interdependently that they appear to be a 
single organism. Lichens are symbionts of a fungus and an alga that live so closely intertwined that they 
can only be separated under a microscope. Bean plants need living bacteria in their roots to fix the nitrogen 
they extract from the soil, and in return the bacteria need nutrients from the bean plants. Even the single-
celled Paramecium bursarra uses green algae living inside itself to synthesize food. 



Another example of two entirely different forms of "life" that form a symbiosis may be even closer to 
the example of the songs and the apes. In The Origins of Life, Freeman Dyson suggests that biological life 
is a symbiotic combination of two different self-reproducing entities with very different forms of 
replication.1 Dyson suggests that life originated in two stages. While most theories of the origin of life 
start with nucleotides replicating in some "primeval soup", Dyson's theory starts with metabolizing drops 
of oil. 

In the beginning these hypothetical replicating oil drops had no genetic material, but were self-
perpetuating chemical systems that absorbed raw materials from their surroundings. When a drop reached a 
certain size it would split; about half of its constituents would go to each part. Such drops evolved efficient 
metabolic systems even though their rules of replication were very different from the Mendelian rules of 
modern life. Once the oil drops became good at metabolizing, they were infected by another form of 
replicators that, like the songs, had no metabolism of their own. These were parasitic molecules of DNA; 
like modern viruses, they took advantage of the existing machinery of the host cells to reproduce. The 
metabolizers and the DNA eventually coevolved into the mutually beneficial symbiosis that we know today 
as life. 

This two-part theory of life is not conceptually far from the two-part story of intelligence. Both 
suggest that a preexisting homoestatic mechanism was infected by an opportunistic parasite. The two parts 
reproduced according to different sets of rules, but were able to coevolve so successfully that the resulting 
symbiont appears to be a single entity. Viewed in this light, choosing between emergence and symbolic 
computation in the study of intelligence is like choosing between metabolism and genetic replication in the 
study of life. Just as the metabolic system provides a substrate in which the genetic system can work, so an 
emergent system may provide a substrate in which the symbolic system can operate. 

Currently the metabolic system of life is far too complex for us to fully understand or reproduce it. By 
comparison the Mendelian rules of genetic replication are almost trivial, and it is possible to study them as 
a system unto themselves without worrying about the details of the metabolism that supports them. In the 
same sense, it seems likely that symbolic thought can be fruitfully studied and perhaps even recreated 
without worrying about the details of the emergent system that supports it. So far this has been the 
dominant approach in AI and the approach that has yielded the most progress. 

The other approach is to build a model of the emergent substrate of intelligence. This artificial 
substrate for thought would not need to mimic in detail the mechanisms of the biological system, but it 
would need to exhibit those emergent properties that are necessary to support the operations of thought. 

What is the minimum that we would need to understand in order to construct such a system? For one 
thing, we would need to know how big a system to build. Information theory suggests that the appropriate 
unit of measure is the number of binary digits, or bits, required to store the information. How many bits are 
required to store the acquired portion of human knowledge of a typical human? We need to know an 
approximate answer in order to construct an emergent intelligence with humanlike performance. Currently 
the amount of acquired information stored by an average human brain is not known to within even two 
orders of magnitude, but it can in principle be determined by experiment. There are at least three ways to 
estimate the storage requirements for emergent intelligence. 

One way would be through an understanding of the physical mechanisms of memory in the human 
brain. If information is stored primarily by modifications of synapses, then it would be possible to measure 
the information-storage capacity of the brain by counting the number of synapses. Elsewhere in this issue 
of Dædalus, Jacob T. Schwartz estimates that the brain contains roughly 1015 synapses. But even knowing 
the exact amount of physical storage in the brain would not completely answer the question of storage 
requirement, since much potential storage capacity might be unused or used inefficiently. But at least this 
method can help establish an upper bound on the requirements. 

A second method for estimating the storage requirements for emergent intelligence is to measure the 
information in symbolic knowledge by some form of statistical sampling. For instance, it is possible to 
estimate the size of an individual's vocabulary by testing him or her on words randomly sampled from a 
dictionary. The fraction of test words known by the individual is a good indication of the fraction of words 



that he or she knows in the complete dictionary. The estimated vocabulary size is the test fraction 
multiplied by the number of words in the dictionary. Such an experiment depends on having a predetermined 
body of knowledge against which to measure. For example, it would be possible to estimate how many 
facts in the Encyclopaedia Britannica were known by a given individual, but this would give no measure of 
facts known by the individual but not contained in the encyclopedia. This method is useful only in 
establishing a lower bound. 

A related experiment is the game of twenty questions, in which one player identifies an object chosen 
by another by asking a series of twenty yes-or-no questions. Since each answer provides no more than a 
single bit of information, and since skillful players generally need to ask almost all of the twenty questions 
to correctly identify the chosen object, we can estimate that the number of allowable choices known in 
common by the two players is on the order of 220, or about one million. Of course, this measure is 
inaccurate because the questions are not perfect and the choices of objects are not random. It is possible that 
a refined version of the game could be developed and used to provide another lower bound. 

A third approach to gauging the human brain's storage requirements for information in the symbolic 
portion of knowledge is to estimate the average rate of information acquisition and to calculate the amount 
that would accumulate over time. For example, experiments on memorizing random sequences of syllables 
indicate that the maximum rate of memorization of this type of knowledge is about one "chunk" per second. 
A chunk, in this context, can be safely assumed to contain less than 100 bits of information, so the results 
suggest that the maximum rate at which a human is able to commit information to long term memory is 
significantly less than 100 bits per second.2 If this is true, a twenty-year-old human learning at the 
maximum rate for sixteen hours a day (and never forgetting) would know less than 50 billion bits of 
information. I find this number surprisingly small. 

A difficulty with this estimate of the rate of acquisition is that the experiment measures only 
information coming through one sensory channel under one particular set of circumstances. The visual 
system sends more than a million times this rate of information to the optic nerve, and it is conceivable 
that all of this information is committed to memory. If it turns out that images are stored directly, it will 
be necessary to significantly increase the 100-bit-per-second limit, but there is no current evidence that this 
is the case. In experiments measuring the ability of exceptional individuals to store eidetic (i.e., 
extraordinarily accurate and vivid) images of random-dot stereograms, the subjects are given about five 
minutes to memorize an image formed in a square array of 100 x 100 dots.  Memorizing only a few hundred 
bits is probably sufficient to pass the test. 

I am aware of no evidence that more than a few bits per second of any type of information can be 
committed to long-term memory. Even if we accept reports of extraordinary feats of memory (such as those 
of Luria’s showman in Mind of the Mnemonist3) at face value, the average rate of commitment to memory 
never seems to exceed a few bits per second. Even if we knew the maximum rate of memorization exactly, 
the rate averaged over a lifetime would probably be very much less—but knowing the maximum rate would 
establish an upper bound on the requirements of storage. 

The sketchy data cited above suggests that an intelligent machine would require 109 bits of storage, 
plus or minus two orders of magnitude. This assumes that the information is encoded in such a way that it 
requires a minimum amount of storage; for the purpose of processing information, this would probably not 
be the most practical representation. As a would-be builder of thinking machines, I find this number 
encouragingly small, since it is well within the range of current electronic computers. As a human with an 
ego, I find it distressing: I do not like to think that my entire lifetime of memories could be placed on a reel 
of magnetic tape. It is to be hoped that experimental evidence will clear this up one way or another. 

There are a few subtleties in the question of storage requirements that involve defining the quantity of 
information in a way that is independent of its representation. Information theory provides a precise way of 
measuring information in terms of bits, but it requires a measure of the probabilities over the ensemble of 
possible states. That is, it requires assigning an a priori probability to each possible set of knowledge, 
which is the role of inherited intelligence. Inherited intelligence provides a framework in which the 
knowledge of acquired intelligence can be interpreted. Inherited intelligence defines what is knowable; 
acquired intelligence determines what of the knowable is known. 



Another potential difficulty is how to count the storage of information that can be deduced from other 
data. In the strict information-theoretical sense, data that can be inferred from other data add no information 
at all. An accurate measure would have to take into account the possibility that knowledge is inconsistent, 
and that only limited inferences are actually made. These are the kinds of issues currently being studied on 
the symbolic side of the field of artificial intelligence. 

One issue that does not need to be resolved to measure storage capacity is localized versus distributed 
representation—that is, whether each piece of information is stored in a specific place or spread 
“holographically” over a large area. Knowing what types of representation are used in what parts of the 
human brain is of considerable scientific interest, but it does not have a profound impact on the amount of 
storage in the system or on our ability to measure it. Nontechnical commentators have a tendency to 
attribute almost mystical qualities to distributed storage mechanisms such as those used in creating 
holograms and neural networks, but the limitations on the capacities of these storage mechanisms are well 
understood. 

When a holographic plate is cut in two, each half contains a slightly degraded version of the entire 
image. Distributed representations with properties similar to holograms are often used within conventional 
digital computers, and they are invisible to most users except in the system's capacity to tolerate errors. The 
error-correcting memory system used in most computers is a good example. The system is composed of 
many physically separate memory chips, but any single chip can be removed without losing any data. This 
is because the data are not stored in any one place, but in a distributed, nonlocal representation across all of 
the units. In spite of this "holographic" representation, the information storage capacity of the system is no 
greater than it would be with a conventional representation, in which each piece of data is stored in a single 
chip. In fact, it is slightly less. This is typical of distributed representations. 

Storage capacity offers one measure of the requirements of a humanlike emergent intelligence. Another 
measure is the required rate of computation. Here there is no agreed-upon metric, and it is particularly 
difficulty to define a unit of measure that is completely independent of representation. The measure 
suggested below is simple and important, if not sufficient. 

Given an efficiently stored representation of human knowledge, what rate of access to that storage (in 
bits per second) is required to achieve humanlike performance? Here, efficiently stored representation means 
any representation requiring only a multiplicative constant of storage over the number of bits of 
information. This is a mathematical restriction that eliminates, for example, any representation that stores a 
precomputed answer to every question. Such a restriction does limit the range of possible representations, 
but it allows most representations that we would regard as reasonable. In particular, it allows both 
distributed and local representations. 

The question of the memory bandwidth required for humanlike performance is accessible by experiment 
through approaches similar to those outlined for the question of storage capacity. If the time required for a 
primitive operation of human memory is limited by the firing time of a neuron, then the ratio of this "cycle 
time" to the total number of bits indicates what fraction of the memory is accessed simultaneously. This 
gives an indication of whether the brain is a parallel or serial device. In a serial device, data items are 
operated on sequentially, one at a time. In a parallel device, all data are operated on concurrently. Both serial 
and parallel behaviors are exhibited by the brain, but there is a question as to which model best describes the 
way that it reasons and accesses knowledge. Informed opinions differ greatly in this matter, but the bulk of 
the quantitative evidence favors serial computation. Memory retrieval times for items in lists, for example, 
depend on the position and the number of items in the list. Except for sensory processing, most successful 
artificial intelligence programs have been based on serial models of computation, although this may be a 
distortion caused by the common availability of serial machines. 

My own guess is that the reaction-time experiments are misleading and that human-level performance 
will require that large fractions of knowledge be accessed several times per second. Given a representation of 
acquired intelligence with a realistic representation efficiency of 10 percent, the 109 bits of memory 
mentioned earlier would require a memory bandwidth of about 1011 bits per second. This bandwidth seems 
physiologically plausible, since it corresponds to about a bit per second per neuron in the cerebral cortex. 



By way of comparison, the memory bandwidth of a conventional sequential computer is in the range of 
106 to 108 bits per second. This is less than 0.1 percent of the imagined requirement. For parallel computers 
the bandwidth is considerably higher. For example, a 65,536-processor Connection Machine can access its 
memory at approximately 1011 bits per second.4 It is not entirely coincidence that this fits well with the 
estimate above. 

Another important question is, What sensory-motor functions are necessary to sustain symbolic 
intelligence? An ape is a complex sensory-motor machine, and it is possible that much of this complexity 
is necessary to sustain intelligence. Large portions of the brain seem to be devoted to visual, auditory and 
motor processing, and it is unknown how much of this machinery is needed for thought. A person who is 
blind and deaf or totally paralyzed can undoubtedly be intelligent, but this does not prove that the portion of 
the brain devoted to these functions is unnecessary for thought. It may be, for example, that a blind person 
takes advantage of the visual processing apparatus of the brain for spatial reasoning. 

As we begin to understand more of the functional architecture of the brain, it should be possible to 
identify certain functions as being unnecessary for thought by studying patients whose cognitive abilities 
are unaffected by locally confined damage to the brain. For example, binocular stereo fusion is known to 
take place in a specific area of the cortex near the back of the head. Patients with damage to this area of the 
cortex have visual handicaps but show no obvious impairment in their ability to think. This is a simple 
example, and the conclusion is not surprising, but it should be possible by such experiments to establish 
that many sensory-motor functions are unnecessary. One can imagine metaphorically whittling away at the 
brain until it is reduced to its essential core. Of course, it is not quite this simple. Accidental damage rarely 
incapacitates a single area of the brain completely and exclusively. Also, it may be difficult to eliminate 
one function at a time because one mental capacity may compensate for the lack of another. 

It may be more productive to assume that all sensory-motor apparatus is unnecessary until proven 
useful for thought, but this is contrary to the usual point of view. Our current understanding of the 
phylogenetic development of the nervous system suggests a point of view in which intelligence is an 
elaborate refinement of the connection between input and output. This is reinforced by the experimental 
convenience of studying simple nervous systems, or of studying complicated nervous systems by 
concentrating on those portions most directly related to input and output. By necessity, most everything we 
know about the function of the nervous system comes from experiments on those portions that are closely 
related to sensory inputs or motor outputs. It would not be surprising to learn that we have overestimated 
the importance of these functions to intelligent thought. 

Sensory-motor functions are clearly important for the application of intelligence and for its evolution, 
but these issues are separate from whether sensory-motor functions are necessary for thought to exist. 
Intelligence would not be of much use without an elaborate system of sensory apparatus to measure the 
environment and an elaborate system of motor apparatus to change it, nor would it have been likely to 
evolve. But much more apparatus is probably necessary to exercise and evolve intelligence than to sustain 
it. One can believe in the necessity of the opposable thumb for the development of intelligence without 
doubting a human capacity for thumbless thought. It is quite possible that even the meager sensory-motor 
capabilities that we currently know how to create artificially would be sufficient for the fundamental 
operation of emergent intelligence. 

Although questions of capacity and scope are necessary in defining the magnitude of the task of 
constructing an emergent intelligence, the key question is one of understanding. While it is possible that we 
will be able to recreate the emergent substrate of intelligence without fully understanding the details of how 
it works, it seems likely that we would at least need to understand some of its principles. There are at least 
three paths by which such understanding could be achieved. One is to study the properties of specific 
emergent systems—to build a theory of their capabilities and limitations. This kind of experimental study 
is currently being conducted on several classes of promising man-made systems, including neural networks, 
spin glasses, cellular automata, evolutionary systems, and adaptive automata. Another possible path to 
understanding is the study of biological systems, which are our only real examples of intelligence and our 
only examples of an emergent system that has produced intelligence. The disciplines that have so far 
provided the most useful information of this type have been neurophysiology, cognitive psychology and 



evolutionary biology. A third path would be a theoretical understanding of the requirements of intelligence 
or of the phenomena of emergence. Relevant examples are theories of logic and computability, linguistics, 
and dynamical systems theory. Anyone who looks to emergent systems as a way of defending human 
thought from the scrutiny of science is likely to be disappointed. 

One cannot conclude, however, that a reductionist understanding is necessary for the creation of 
intelligence. Even a little understanding could go a long way toward the construction of an emergent 
system. A good example of this is how cellular automata have been used to simulate the emergent behavior 
of fluids. The whirlpools that form as fluid flows past a barrier are not well understood analytically, yet 
they are of great practical importance in the design of boats and airplanes. Equations that describe the flow 
of a fluid have been known for almost a century, but except for a few simple cases they cannot be solved. In 
practice the flow is generally analyzed by simulation. The most common method of simulation is the 
numerical solution of continuous equations. 

On a highly parallel computer it is possible to simulate fluids with even less understanding of the 
system by simulating billions of colliding particles that reproduce emergent phenomena such as vortices. 
Calculating the detailed molecular interactions of so many particles would be extremely difficult, but a few 
simple aspects of the system, such as conservations of energy and particle number, are sufficient to 
reproduce the large-scale behavior. A system of simplified particles that obey these two laws but are 
otherwise unrealistic can reproduce the same emergent phenomena as reality. For example, it is possible to 
use particles of unit mass that move only at unit speed along a hexagonal lattice, colliding according to the 
rules of billiard balls.5 Experiments show that this model produces laminar flow, vortex streams, and even 
turbulence that is indistinguishable from the behavior of real fluids. Although the detailed rules of 
interaction are very different from the interactions of real molecules, the emergent phenomena are the same. 
The emergent phenomena can be created without understanding the details of the forces between the 
molecules or the equations that describe the flow of the fluid. 

The recreation of intricate patterns of ebbs and flows within a fluid demonstrates that it is possible to 
produce a phenomenon without fully understanding it. But the model was constructed by physicists who 
knew a lot about fluids. That knowledge helped to determine which features of the physical system were 
important to implement and which were not. 

Physics is an unusually exact science. Perhaps a better example of an emergent system that we can 
simulate with only a limited understanding is evolutionary biology. We understand, in a weak sense, how 
creatures with Mendelian patterns of inheritance and different propensities for survival can evolve toward 
better fitness in their environments. In certain simple situations we can even write down equations that 
describe how quickly this adaptation will take place.6 But there are many gaps in our understanding of the 
processes of evolution. We can explain why flying animals have light bones in terms of natural selection, 
but we cannot explain why certain animals have evolved flight while others have not. We have some 
qualitative understanding of the forces that cause evolutionary change, but (except in the simplest cases) we 
cannot explain the rate or even the direction of change. 

In spite of these limitations, our understanding is sufficient to write programs of simulated evolution 
that show interesting emergent behaviors. For example, I have recently been using an evolutionary 
simulation to evolve programs to sort numbers. In this system, the genetic material of each simulated 
individual is interpreted as a program specifying a pattern of comparisons and exchanges. The probability of 
an individual survival in the system is dependent on the efficiency and accuracy of this program in sorting 
numbers. Surviving individuals produce offspring by sexual combination of their genetic material with 
occasional random mutation. After tens of thousands of generations, a population of hundreds of thousands 
of such individuals will evolve very efficient programs for sorting. Although I wrote the simulation that 
produced these sorting programs, I do not understand in detail how they were produced or how they work. If 
the simulation had not produced working programs, I would have had very little idea about how to fix it. 

The fluid flow and simulated evolution examples suggest that it is possible to make a great deal of use 
of a small amount of understanding. The emergent behaviors exhibited by these systems are a consequence 
of the simple underlying rules defined by the program. Although the systems succeed in producing the 
desired results, their detailed behaviors are beyond our ability to analyze and predict. One can imagine that if 



a similar process produced a system of emergent intelligence, we would have a similar lack of understanding 
about how it worked. 

My own guess is that such an emergent system would not be an intelligent system itself, but rather the 
metabolic substrate on which intelligence might grow. In terms of the apes and the songs, the emergent 
portion of the system would play the role of the ape, or at least that part of the ape that hosts the songs. 
This artificial mind would need to be inoculated with human knowledge. I imagine this process to be not so 
different from teaching a child. This would be a tricky and uncertain procedure because, like a child, this 
emergent mind would presumably be susceptible to bad ideas as well as good. The result would be not so 
much an artificial intelligence, but rather a human intelligence sustained within an artificial mind. 

Of course, I understand that this is just a dream, and I will admit that I am propelled more by hope than 
by the probability of success. But if this artificial mind can sustain itself and grow of its own accord, then 
for the first time human thought will live free of bones and flesh, giving this child of mind an earthly 
immortality denied to us. 
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