A Gentle Introduction to
Genetic Algorithms

In this chapter, we introduce genetic algorithms: what they are, where they came
from, and how they compare to and differ from other search procedures. We
illustrate how they work with a hand calculation, and we start to understand their
power through the concept of a schema or similarity template.

WHAT ARE GENETIC ALGORITHMS?

Genetic algorithms are search algorithms based on the mechanics of natural se-
lection and natural genetics. They combine survival of the fittest among string
structures with a structured yet randomized information exchange to form a
search algorithm with some of the innovative flair of human search. In every
generation, a new set of artificial creatures (strings) is created using bits and
pieces of the fittest of the old; an occasional new part is tried for good measure.
While randomized, genetic algorithms are no simple random walk. They effi-
ciently exploit historical information to speculate on new search points with ex-
pected improved performance.

Genetic algorithms have been developed by John Holland, his colleagues, and
his students at the University of Michigan. The goals of their research have been
twofold: (1) to abstract and rigorously explain the adaptive processes of natural
systems, and (2) to design artificial systems software that retains the important
mechanisms of natural systems. This approach has led to important discoveries
in both natural and artificial systems science.

The central theme of research on genetic algorithms has been robustness,
the balance between efficiency and efficacy necessary for survival in many differ-

2 Chapter 1 / A Gentle Introduction to Genetic Algorithms

ent environments. The implications of robustness for artificial systems are mani-
fold. If artificial systems can be made more robust, costly redesigns can be
reduced or climinated. If higher levels of adaptation can be achieved, existing
systems can perform their functions longer and better. Designers of artificial sys-
tems—both software and hardware, whether engineering systems, computer sys-
tems, or business systems—can only marvel at the robustness, the efficiency, and
the flexibility of biological systems. Featurcs for self-repair, sclf-guidance, and re-
production are the rule in biological systems, whereas they barely exist in the
most sophisticated artificial systems.

Thus, we are drawn to an interesting conclusion: where robust performance
is desired (and where is it not?), nature does it better; the secrets of adaptation
and survival are best learned from the careful study of biological example. Yet
we do not accept the genetic algorithm method by appeal to this beauty-of-nature
argument alone. Genetic algorithms are theoretically and empirically proven to
provide robust search in complex spaces. The primary monograph on the topic
is Holland’s (1975) Adaptation in Natural and Artificial Systems. Many papers
and dissertations establish the validity of the technique in function optimization
and control applications. Having been established as a valid approach to problems
requiring efficient and effective search, genetic algorithms are now finding more
widespread application in business, scientific, and engineering circles. The rea-
sons behind the growing numbers of applications are clear. These algorithms are
computationally simple yet powerful in their search for improvement. Further-
more, they are not fundamentally limited by restrictive assumptions about the
search space (assumptions concerning continuity, existence of derivatives, uni-
modality, and other matters). We will investigate the reasons behind these attrac-
tive qualities; but before this, we need to explore the robustness of more widely
accepted search procedures.

ROBUSTNESS OF TRADITIONAL OPTIMIZATION
AND SEARCH METHODS

This book is not a comparative study of search and optimization techniques.
Nonetheless, it is important to question whether conventional search methods
meet our robustness requirements. The current literature identifies three main
types of search methods: calculus-based, enumerative, and random. Let us ex-
amine each type to see what conclusions may be drawn without formal testing.
Calculus-based methods have been studied heavily. These subdivide into two
main classes: indirect and direct. Indirect methods seek local extrema by solving
the usually nonlinear set of equations resulting from setting the gradient of the
objective function equal to zero. This is the multidimensional generalization of
the elementary calculus notion of extremal points, as illustrated in Fig. 1.1. Given
a smooth, unconstrained function, finding a possible peak starts by restricting
search to those points with slopes of zero in all directions. On the other hand,

Robustness of Traditional Optimization and Search Methods 3

FIGURE 1.1 The single-peak function is easy for calculus-based methods.

direct (search) methods seek local optima by hopping on the function and mov-
ing in a direction related to the local gradient. This is simply the notion of bill-
climbing: to find the local best, climb the function in the steepest permissible
direction. While both of these calculus-based methods have been improved,
extended, hashed, and rehashed, some simple reasoning shows their lack of
robustness.

First, both methods are local in scope; the optima they seek are the best in a
neighborhood of the current point. For example, suppose that Fig. 1.1 shows a
portion of the complete domain of interest; a more complete picture is shown in
Fig. 1.2. Clearly, starting the search or zero-finding procedures in the neighbor-
hood of the lower peak will cause us to miss the main event (the higher peak).
Furthermore, once the lower peak is reached, further improvement must be
sought through random restart or other trickery. Second, calculus-based methods
depend upon the existence of derivatives (well-defined slope values). Even if we
allow numerical approximation of derivatives, this is a severe shortcoming. Many
practical parameter spaces have little respect for the notion of a derivative and
the smoothness this implies. Theorists interested in optimization have been too
willing to accept the legacy of the great eighteenth and nineteenth-century math-
ematicians who painted a clean world of quadratic objective functions, ideal con-
straints, and ever present derivatives. The real world of search is fraught with
discontinuities and vast multimodal, noisy search spaces as depicted in a less
calculus-friendly function in Fig. 1.3. It comes as no surprise that methods de-
pending upon the restrictive requirements of continuity and derivative existence
are unsuitable for all but a very limited problem domain. For this reason and

4 Chapter 1/ A Gentle Infroduction to Genetic Algorithms

f(x,y)

FIGURE 1.2 The multiple-peak function causes a dilemma. Which hill should
we climb?

because of their inherently local scope of search, we must reject calculus-based
methods. They are insufficiently robust in unintended domains.

Enumerative schemes have been considered in many shapes and sizes. The
idea is fairly straightforward; within a finite search space, or a discretized infinite
search space, the search algorithm starts looking at objective function values at
every point in the space, one at a time. Although the simplicity of this type of

160

150 +
140
130 H
120 A
110 H
f(X) 100
S0
80 -
70 H

60
50

40
30

20 A
10

T

T T
0.00 0.20 0.40 0.60 0.80 1.00

X

FIGURE 1.3 Many functions are noisy and discontinuous and thus unsuitable
for search by traditional methods.

Robustness of Traditional Optimization and Search Methods 5

algorithm is attractive, and enumeration is a very human kind of search (when
the number of possibilities is small), such schemes must ultimately be discounted
in the robustness race for one simple reason: lack of efficiency. Many practical
spaces are simply too large to search one at a time and still have a chance of using
the information to some practical end. Even the highly touted enumerative
scheme dynamic programming breaks down on problems of moderate size and
complexity, suffering from a malady melodramatically labeled the “curse of di-
mensionality” by its creator (Bellman, 1961). We must conclude that less clever
enumerative schemes are similarly, and more abundantly, cursed for real
problems.

Random search algorithms have achieved increasing popularity as research-
ers have recognized the shortcomings of calculus-based and enumerative
schemes. Yet, random walks and random schemes that search and save the best
must also be discounted because of the efficiency requirement. Random searches,
in the long run, can be expected to do no better than enumerative schemes. In
our haste to discount strictly random search methods, we must be careful to
separate them from randomized techniques. The genetic algorithm is an example
of a search procedure that uses random choice as a tool to guide a highly exploi-
tative search through a coding of a parameter space. Using random choice as a
tool in a directed search process seems strange at first, but nature contains many
examples. Another currently popular search technique, simulated annealing,
uses random processes to help guide its form of search for minimal energy states.
A recent book (Davis, 1987) explores the connections between simulated an-
nealing and genetic algorithms. The important thing to recognize at this juncture
is that randomized search does not necessarily imply directionless search.

While our discussion has been no exhaustive examination of the myriad
methods of traditional optimization, we are left with a somewhat unsettling con-
clusion: conventional search methods are not robust. This does not imply that
they are not useful. The schemes mentioned and countless hybrid combinations
and permutations have been used successfully in many applications; however, as
more complex problems are attacked, other methods will be necessary. To put
this point in better perspective, inspect the problem spectrum of Fig. 1.4. In the
figure a mythical effectiveness index is plotted across a problem continuum for a
specialized scheme, an enumerative scheme, and an idealized robust scheme. The
gradient technique performs well in its narrow problem class, as we expect, but
it becomes highly inefficient (if useful at all) elsewhere. On the other hand, the
enumerative scheme performs with egalitarian inefficiency across the spectrum
of problems, as shown by the lower performance curve. Far more desirable would
be a performance curve like the one labeled Robust Scheme. It would be worth-
while sacrificing peak performance on a particular problem to achieve a relatively
high level of performance across the spectrum of problems. (Of course, with
broad, efficient methods we can always create hybrid schemes that combine the
best of the local search method with the more general robust scheme. We will
have more to say about this possibility in Chapter 5.) We shall soon see¢ how
genetic algorithms help fill this robustness gap.

6 Chapter 1 / A Gentle Introduction to Genetic Algorithms

1
Robust Scheme
| >
i (C) Specialized Scheme
5 2
| 5
| —
5 48]
i i
I
Enumeration or
Random Walk
0

combinatorial unimodal multimodal
Problem Type

FIGURE 1.4 Many traditional schemes work well in a narrow problem domain.
Enumerative schemes and random walks work equally inefficiently across a broad
spectrum. A robust method works well across a broad spectrum of problems.

THE GOALS OF OPTIMIZATION

Before examining the mechanics and power of a simple genetic algorithm, we
must be clearer about our goals when we say we want to optimize a function or
a process. What are we trying to accomplish when we optimize? The conven-
tional view is presented well by Beightler, Phillips, and Wilde (1979, p. 1):

Man’s longing for perfection finds expression in the theory of optimiza-
tion. It studies how to describe and attain what is Best, once one knows
how to measure and alter what is Good or Bad. ... Optimization theory
encompasses the quantitative study of optima and methods for finding
them. .

Thus optimization seeks to improve performance toward some optimal point or
points. Note that this definition has two parts: (1) we seek improvement to ap-
proach some (2) optimal point. There is a clear distinction between the process
of improvement and the destination or optimum itself. Yet, in judging optimiza-
tion procedures we commonly focus solely upon convergence (does the method
reach the optimum?) and forget entirely about interim performance. This empha-
sis stems from the origins of optimization in the calculus. It is not, however, a
natural emphasis.

How are Genetic Algorithms Different from Traditional Methods? 7

Consider a human decision maker, for example, a businessman. How do we
judge his decisions? What criteria do we use to decide whether he has done
a good or bad job? Usually we say he has done well when he makes adequate
selections within the time and resources allotted. Goodness is judged relative
to his competition. Does he produce a better widget? Does he get it to market
more efficiently? With better promotion? We never judge a businessman by an
attainment-of-the-best criterion; perfection is all too stern a taskmaster. As a re-
sult, we conclude that convergence to the best is not an issue in business or in
most walks of life; we are only concerned with doing better relative to others.
Thus, if we want more humanlike optimization tools, we are led to a reordering
of the priorities of optimization. The most important goal of optimization is im-
provement. Can we get to some good, “satisficing” (Simon, 1969) level of per-
formance quickly? Attainment of the optimum is much less important for
complex systems. It would be nice to be perfect: meanwhile, we can only strive
to improve. In the next chapter we watch the genetic algorithm for these quali-
ties; here we outline some important differences between genetic algorithms and
more traditional methods.

HOW ARE GENETIC ALGORITHMS DIFFERENT FROM
TRADITIONAL METHODS?

In order for genetic algorithms to surpass their more traditional cousins in the
quest for robustness, GAs must differ in some very fundamental ways. Genetic
algorithms are different from more normal optimization and search procedures
in four ways:

1. GAs work with a coding of the parameter set, not the parameters themselves.

2. GAs search from a population of points, not a single point.

3. GAs use payoft (objective function) information, not derivatives or other
auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

Genetic algorithms require the natural parameter set of the optimization
problem to be coded as a finite-length string over some finite alphabet. As an
example, consider the optimization problem posed in Fig. 1.5. We wish to maxi-
mize the function f(x) = x? on the integer interval [0, 31]. With more traditional
methods we would be tempted to twiddle with the parameter x, turning it like
the vertical hold knob on a television set, until we reached the highest objective
function value. With GAs, the first step of our optimization process is to code the
parameter x as a finite-length string. There are many ways to code the x param-
eter, and Chapter 3 examines some of these in detail. At the moment, let's con-
sider an optimization problem where the coding comes a bit more naturally.

Consider the black box switching problem illustrated in Fig. 1.6. This prob-
lem concerns a black box device with a bank of five input switches. For every
setting of the five switches, there is an output signal £ mathematically f = f(s),

Chapter 1 / A Gentle Introduction to Genetic Algorithms

1000

X

FIGURE 1.5 A simple function optimization example, the function f{x) = x? on
the integer interval [0, 31].

where s is a particular setting of the five switches. The objective of the problem
is to set the switches to obtain the maximum possible f value. With other meth-
ods of optimization we might work directly with the parameter set (the switch
settings) and toggle switches from one setting to another using the transition
rules of our particular method. With genetic algorithms, we first code the
switches as a finite-length string. A simple code can be generated by considering
a string of five 1's and 0’s where each of the five switches is represented by a 1 if
the switch is on and a 0 if the switch is off. With this coding, the string 11110
codes the setting where the first four switches are on and the fifth switch is off.
Some of the codings introduced later will not be so obvious, but at this juncture
we acknowledge that genetic algorithms use codings. Later it will be apparent

PAYOFF
$

OQNONOQNOQNON
OFFOFFOFFOFFOFF

FIGURE 1.6 A black box optimization problem with five on-off switches illus-
trates the idea of a coding and a payoff measure. Genetic algorithms only require
these two things: they don’t need to know the workings of the black box.

f(s)
OUTPUT SIGNAL

How are Genetic Algorithms Different from Traditional Methods? 9

that genetic algorithms exploit coding similaritics in a very gencral way; as a
result, they are largely unconstrained by the limitations of other methods (con-
tinuity, derivative existence, unimodality, and so on).

In many optimization methods, we move gingerly from a single point in the
decision space to the next using some transition rule to determine the next point.
This point-to-point method is dangerous because it is a perfect prescription for
locating false peaks in multimodal (many-peaked) search spaces. By contrast, GAs
work from a rich database of points simultaneously (a population of strings),
climbing many peaks in parallel; thus, the probability of finding a false peak is
reduced over methods that go point to point. As an example, let’s consider our
black box optimization problem (Fig. 1.6) again. Other techniques for solving
this problem might start with one set of switch settings, apply some transition
rules, and generate a new trial switch setting. A genetic algorithm starts with a
population of strings and thereafter generates successive populations of strings.
For example, in the five-switch problem, a random start using successive coin
flips (head = 1, tail = 0) might generate the initial population of size n = 4
(small by genetic algorithm standards):

0l101
11000
01000
10011

After this start, successive populations are generated using the genetic algorithm.
By working from a population of well-adapted diversity instead of a single point,
the genetic algorithm adheres to the old adage that there is safety in numbers;
we will soon see how this parallel flavor contributes to a genetic algorithm’s
robustness.

Many search techniques require much auxiliary information in order to work
properly. For example, gradient techniques need derivatives (calculated analyti-
cally or numerically) in order to be able to climb the current peak, and other
local search procedures like the greedy techniques of combinatorial optimization
(Lawler, 19706; Syslo, Deo, and Kowalik, 1983) require access to most if not all
tabular parameters. By contrast, genetic algorithms have no need for all this aux-
iliary information: GAs are blind. To perform an effective search for better and
better structures, they only require payoff values (objective function values) as-
sociated with individual strings. This characteristic makes a GA a more canonical
method than many search schemes. After all, every search problem has a metric
(or metrics) relevant to the search; however, different search problems have
vastly different forms of auxiliary information. Only if we refuse to use this aux-
iliary information can we hope to develop the broadly based schemes we desire.
On the other hand, the refusal to use specific knowledge when it does exist can
place an upper bound on the performance of an algorithm when it goes head to
head with methods designed for that problem. Chapter 5 examines ways to use
nonpayoff information in so-called knowledge-directed genetic algorithms; how-
ever, at this juncture we stress the importance of the blindness assumption to
pure genetic algorithm robustness.

10 Chapter 1 / A Gentle Introduction to Genetic Algorithms

Unlike many methods, GAs use probabilistic transition rules to guide their
search. To persons familiar with deterministic methods this seems odd, but the
use of probability does not suggest that the method is some simple random
search; this is not decision making at the toss of a coin. Genetic algorithms use
random choice as a tool to guide a search toward regions of the search space with
likely improvement.

Taken together, these four differences—direct use of a coding, search from a
population, blindness to auxiliary information, and randomized operators—con-
tribute to a genetic algorithm’s robustness and resulting advantage over other
more commonly used techniques. The next section introduces a simple three-
operator genetic algorithm.

A SIMPLE GENETIC ALGORITHM

The mechanics of a simple genetic algorithm are surprisingly simple, involving
nothing more complex than copying strings and swapping partial strings. The
explanation of why this simple process works is much more subtle and powerful.
Simplicity of operation and power of effect are two of the main attractions of the
genetic algorithm approach.

The previous section pointed out how genetic algorithms process popula-
tions of strings. Recalling the black box switching problem, remember that the
initial population had four strings:

01101
11000
01000
10011

Also recall that this population was chosen at random through 20 successive flips
of an unbiased coin. We now must define a set of simple operations that take this
initial population and generate successive populations that (we hope) improve
over time.

A simple genetic algorithm that yields good results in many practical prob-
lems is composed of three operators:

1. Reproduction
2. Crossover
3. Mutation

Reproduction is a process in which individual strings are copied according
to their objective function values, f (biologists call this function the fitness func-
tion). Intuitively, we can think of the function f as some measure of profit, utility,
or goodness that we want to maximize. Copying strings according to their fitness
values means that strings with a higher value have a higher probability of con-
tributing one or more offspring in the next generation. This operator, of course,
is an artificial version of natural selection, a Darwinian survival of the fittest

A Simple Genetic Algorithm 11

TABLE 1.1 Sample Problem Strings and Fitness Values

No. String Fitness % of Total
1 01101 169 14.4
2 11000 576 49.2
3 01000 64 5.5
4 10011 361 30.9
Total 1170 100.0

among string creatures. In natural populations fitness is determined by a crea-
ture’s ability to survive predators, pestilence, and the other obstacles to adult-
hood and subsequent reproduction. In our unabashedly artificial setting, the
objective function is the final arbiter of the string-creature’s life or death.

The reproduction operator may be implemented in algorithmic form in a
number of ways. Perhaps the easiest is to create a biased roulette wheel where
each current string in the population has a roulette wheel slot sized in proportion
to its fitness. Suppose the sample population of four strings in the black box
problem has objective or fitness function values f as shown in Table 1.1 (for now
we accept these values as the output of some unknown and arbitrary black box—
later we will examine a function and coding that generate these same values).

Summing the fitness over all four strings, we obtain a total of 1170. The
percentage of population total fitness is also shown in the table. The correspond-
ing weighted roulette wheel for this generation’s reproduction is shown in Fig.
1.7. To reproduce, we simply spin the weighted roulette wheel thus defined four
times. For the example problem, string number 1 has a fitness value of 169, which
represents 14.4 percent of the total fitness. As a result, string 1 is given 14.4
percent of the biased roulette wheel, and each spin turns up string 1 with prob-

14.4%

@ 354 43.2%

®

FIGURE 1.7 Simple reproduction allocates offspring strings using a roulette
wheel with slots sized according to fitness. The sample wheel is sized for the
problem of Tables 1.1 and 1.2.

12

Chapter 1 / A Gentle Introduction to Genetic Algorithms

ability 0.144. Each time we require another offspring, a simple spin of the
weighted roulette wheel yields the reproduction candidate. In this way, more
highly fit strings have a higher number of offspring in the succeeding generation.
Once a string has been selected for reproduction, an exact replica of the string
is made. This string is then entered into a mating pool, a tentative new population,
for further genetic operator action.

After reproduction, simple crossover (Fig. 1.8) may proceed in two steps.
First, members of the newly reproduced strings in the mating pool are mated at
random. Second, each pair of strings undergoes crossing over as follows: an in-
teger position k along the string is selected uniformly at random between 1 and
the string length less one [1, / — 1}. Two new strings are created by swapping all
characters between positions 2 + 1 and [/ inclusively. For example, consider
strings A, and A, from our example initial population:

A, =0110]1
A,=11001}0

Suppose in choosing a random number between 1 and 4, we obtain a & = 4 (as
indicated by the separator symbol |). The resulting crossover yields two new
strings where the prime (') means the strings are part of the new generation:

A, =01100
A, =11001

BEFORE CROSSOVER AFTER CROSSOVER

CROSSING SITE

——hhhnt LA rev s

CRDSSBVERI >

STRING 2 /\/\/\/\/\ “~WNUUL = swmazL

FIGURE 1.8 A schematic of simple crossover shows the alignment of two
strings and the partial exchange of information, using a cross site chosen at
random.

A Simple Genetic Algorithm 13

The mechanics of reproduction and crossover are surprisingly simple, involv-
ing random number generation, string copies, and some partial string exchanges.
Nonetheless, the combined emphasis of reproduction and the structured, though
randomized, information exchange of crossover give genetic algorithms much of
their power. At first this seems surprising. How can two such simple (and com-
putationally trivial) operators result in anything useful, let alone a rapid and ro-
bust search mechanism? Furthermore, doesn’t it seem a little strange that chance
should play such a fundamental role in a directed search process? We will ex-
amine a partial answer to the first of these two questions in a moment; the answer
to the second question was well recognized by the mathematician J. Hadamard
(1949, p. 29):

We shall see a little later that the possibility of imputing discovery to
pure chance is already excluded. ... On the contrary, that there is an
intervention of chance but also a necessary work of unconsciousness,
the latter implying and not contradicting the former. . .. Indeed, it is ob-
vious that invention or discovery, be it in mathematics or anywhere else,
takes place by combining ideas.

Hadamard suggests that even though discovery is not a result—cannot be a re-
sult—of pure chance, it is almost certainly guided by directed serendipity. Fur-
thermore, Hadamard hints that a proper role for chance in a more humanlike
discovery mechanism is to cause the juxtaposition of different notions. It is in-
teresting that genetic algorithms adopt Hadamard’s mix of direction and chance
in a manner that efficiently builds new solutions from the best partial solutions
of previous trials.

To see this, consider a population of »n strings (perhaps the four-string pop-
ulation for the black box problem) over some appropriate alphabet, coded so
that each is a complete idea or prescription for performing a particular task (in
this case, each string is one complete switch-setting idea). Substrings within each
string (idea) contain various notions of what is important or relevant to the task.
Viewed in this way, the population contains not just a sample of n ideas; rather,
it contains a multitude of notions and rankings of those notions for task perfor-
mance. Genetic algorithms ruthlessly exploit this wealth of information by (1)
reproducing high-quality notions according to their performance and (2) cross-
ing these notions with many other high-performance notions from other strings.
Thus, the action of crossover with previous reproduction speculates on new ideas
constructed from the high-performance building blocks (notions) of past trials.
In passing, we note that despite the somewhat fuzzy definition of a notion, we
have not limited a notion to simple linear combinations of single features or pairs
of features. Biologists have long recognized that evolution must efficiently pro-
cess the epistasis (positionwise nonlinearity) that arises in nature. In a similar
manner, the notion processing of genetic algorithms must effectively process no-
tions even when they depend upon their component features in highly nonlinear
and complex ways.

14

Chapter 1 / A Gentle Introduction to Genetic Algorithms

Exchanging of notions to form new ideas is appealing intuitively, if we think
in terms of the process of innovation. What is an innovative idea? As Hadamard
suggests, most often it is a juxtaposition of things that have worked well in the
past. In much the same way, reproduction and crossover combine to search po-
tentially pregnant new ideas. This experience of emphasis and crossing is analo-
gous to the human interaction many of us have observed at a trade show or
scientific conference. At a widget conference, for example, various widget ex-
perts from around the world gather to discuss the latest in widget technology.
After the lecture sessions, they all pair off around the bar to exchange widget
stories. Well-known widget experts, of course, are in greater demand and ex-
change more ideas, thoughts, and notions with their lesser known widget col-
leagues. When the show ends, the widget people return to their widget
laboratories to try out a surfeit of widget innovations. The process of reproduc-
tion and crossover in a genetic algorithm is this kind of exchange. High-perfor-
mance notions are repeatedly tested and exchanged in the search for better and
better performance.

If reproduction according to fitness combined with crossover gives genetic
algorithms the bulk of their processing power, what then is the purpose of the
mutation operator? Not surprisingly, there is much confusion about the role of
mutation in genetics (both natural and artificial). Perhaps it is the result of too
many B movies detailing the exploits of mutant eggplants that consume mass
quantities of Tokyo or Chicago, but whatever the cause for the confusion, we find
that mutation plays a decidedly secondary role in the operation of genetic algo-
rithms. Mutation is needed because, even though reproduction and crossover
effectively search and recombine extant notions, occasionally they may become
overzealous and lose some potentially useful genetic material (1’s or O’s at partic-
ular locations). In artificial genetic systems, the mutation operator protects
against such an irrecoverable loss. In the simple GA, mutation is the occasional
(with small probability) random alteration of the value of a string position. In the
binary coding of the black box problem, this simply means changinga 1 to a 0
and vice versa. By itself, mutation is a random walk through the string space.
When used sparingly with reproduction and crossover, it is an insurance policy
against premature loss of important notions.

That the mutation operator plays a secondary role in the simple GA, we sim-
ply note that the frequency of mutation to obtain good results in empirical
genetic algorithm studies is on the order of one mutation per thousand bit (po-
sition) transfers. Mutation rates are similarly small (or smaller) in natural popu-
lations, leading us to conclude that mutation is appropriately considered as a
secondary mechanism of genetic algorithm adaptation.

Other genetic operators and reproductive plans have been abstracted from
the study of biological example. However, the three examined in this section,
reproduction, simple crossover, and mutation, have proved to be both computa-
tionally simple and effective in attacking a number of important optimization
problems. In the next section, we perform a hand simulation of the simple genetic
algorithm to demonstrate both its mechanics and its power.

Genetic Algorithms at Work—A Simulation by Hand 15

GENETIC ALGORITHMS AT WORK—A SIMULATION BY HAND

Let's apply our simple genetic algorithm to a particular optimization problem step
by step. Consider the problem of maximizing the function f(x) = x?, where x is
permitted to vary between 0 and 31, a function displayed earlicr as Fig. 1.5. To
use a genetic algorithm we must first code the decision variables of our problem
as some finite-length string. For this problem, we will code the variable x simply
as a binary unsigned integer of length 5. Before we proceed with the simulation,
let’s briefly review the notion of a binary integer. As decadigited creatures, we
have little problem handling base 10 integers and arithmetic. For example, the
five-digit number 53,095 may be thought of as

5-10" + 3-10° + 0-10° + 9-10" + 5-1 = 53,095.

In base 2 arithmetic, we of course only have two digits to work with, O and 1,
and as an example the number 10,011 decodes to the base 10 number

1122+ 02+ 022+ 1:2' + 1:2°=16+ 2+ 1 =19,

With a five-bit (binary digit) unsigned integer we can obtain numbers between
0 (00000) and 31 (11111). With a well-defined objective function and coding,
we now simulate a single generation of a genetic algorithm with reproduction,
crossover, and mutation.

To start off, we select an initial population at random. We select a population
of size 4 by tossing a fair coin 20 times. We can skip this step by using the initial
population created in this way earlier for the black box switching problem. Look-
F ing at this population, shown on the left-hand side of Table 1.2, we observe that

the decoded x values are presented along with the fitness or objective function
values f(x). To make sure we know how the fitness values f{(x) are calculated
from the string representation, let’s take a look at the third string of the initial
population, string 01000. Decoding this string as an unsigned binary integer, we
note that there is a single one in the 2° = 8’s position. Hence for string 01000
we obtain x = 8. To calculate the fitness or objective function we simply square
the x value and obtain the resulting fitness value f(x) = 04. Other x and f(x)
values may be obtained similarly.

You may notice that the fitness or objective function values are the same as
the black box values (compare Tables 1.1 and 1.2). This is no coincidence, and
the black box optimization problem was well represented by the particular func-
tion, f(x), and coding we are now using. Of course, the genetic algorithm need
not know any of this; it is just as happy to optimize some arbitrary switching
function (or any other finite coding and function for that matter) as some poly-
nomial function with straightforward binary coding. This discussion simply rein-
forces one of the strengths of the genetic algorithm: by exploiting similarities in
codings, genetic algorithms can deal effectively with a broader class of functions
than can'many other procedures.

A generation of the genetic algorithm begins with reproduction. We select
the mating pool of the next generation by spinning the weighted roulette wheel

16

Chapter 1 / A Gentle Introduction to Genetic Algorithms

TABLE 1.2 A Genetic Algorithm by Hand

™ Actual
Initial Expected Count
Population x Value pselect, count from
String Randomly Unsigned Sx) A L Roulette
No Generated Integer x? 2f f Wheel
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 301 0.31 1.23 1
Sum 1170 1.00 4.00 4.0
Average 293 0.25 1.00 1.0
Max 576 0.49 1.97 2.0

(shown in Fig. 1.7) four times. Actual simulation of this process using coin tosses
has resulted in string 1 and string 4 receiving one copy in the mating pool, string
2 receiving two copies, and string 3 receiving no copies, as shown in the center
of Table 1.2. Comparing this with the expected number of copies (#-pselect;) we
have obtained what we should expect: the best get more copies, the average stay
even, and the worst die off.

With an active pool of strings looking for mates, simple crossover proceeds
in two steps: (1) strings are mated randomly, using coin tosses to pair off the
happy couples, and (2) mated string couples cross over, using coin tosses to
select the crossing sites. Referring again to Table 1.2, random choice of mates has
selected the second string in the mating pool to be mated with the first. With a
crossing site of 4, the two strings 01101 and 11000 cross and yield two new
strings 01100 and 11001. The remaining two strings in the mating pool are
crossed at site 2; the resulting strings may be checked in the table.

The last operator, mutation, is performed on a bit-by-bit basis. We assume
that the probability of mutation in this test is 0.001. With 20 transferred bit po-
sitions we should expect 20-0.001 = 0.02 bits to undergo mutation during a
given generation. Simulation of this process indicates that no bits undergo mu-
tation for this probability value. As a result, no bit positions are changed from O
to 1 or vice versa during this generation.

Following reproduction, crossover, and mutation, the new population is
ready to be tested. To do this, we simply decode the new strings created by the
simple genetic algorithm and calculate the fitness function values from the x
values thus decoded. The results of a single generation of the simulation are
shown at the right of Table 1.2. While drawing concrete conclusions from a single
trial of a stochastic process is, at best, a risky business, we start to see how genetic
algorithms combine high-performance notions to achieve better performance. In
the table, note how both the maximal and average performance have improved
in the new population. The population average fitness has improved from 293 to

Genetic Algorithms at Work—A Simulation by Hand 17

TABLE 1.2 (Continued)

Mating Pool after Mate Crossover Site
Reproduction Randomly Randomly New X Ax)
(Cross Site Shown) Selected Selected Population Value xt
01101 2 4 01100 12 144
1100/0 1 4 11001 25 625
11{0600 4 2 11011 27 729
10/011 3 2 10000 16 256
1754
729
NOTES:

1) Initial population chosen by four repetitions of five coin tosses where heads = 1, tails = 0.

2) Reproduction performed through 1 part in 8 simulation of roulette wheel selection (three
coin tosses).

3) Crossover performed through binary decoding of 2 coin tosses (TT = 00, = 0 = cross site
1,HH = 11, = 3 = cross site 4).

4) Crossover probability assumed to be unity p. = 1.0.

5) Mutation probability assumed to be 0.001, p,, = 0.001, Expected mutations = 5-4:0.001 =
0.02. No mutations expected during a single generation. None simulated.

439 in one generation. The maximum fitness has increased from 576 to 729 dur-
ing that same period. Although random processes help cause these happy circum-
stances, we start to see that this improvement is no fluke. The best string of the
first generation (11000) receives two copies because of its high, above-average
performance. When this combines at random with the next highest string
(10011) and is crossed at location 2 (again at random), one of the resulting
strings (11011) proves to be a very good choice indeed.

This event is an excellent illustration of the ideas and notions analogy devel-
oped in the previous section. In this case, the resulting good idea is the combi-
nation of two above-average notions, namely the substrings 11— ——and ———-11.
Although the argument is still somewhat heuristic, we start to see how genetic
algorithms effect a robust search. In the next section, we expand our understand-
ing of these concepts by analyzing genetic algorithms in terms of schemata or
similarity templates.

The intuitive viewpoint developed thus far has much appeal. We have com-
pared the genetic algorithm with certain human search processes commonly
called innovative or creative. Furthermore, hand simulation of the simple genetic
algorithm has given us some confidence that indeed something interesting is
going on here. Yet, something is missing. What is being processcd by genetic
algorithms and how do we know whether processing it (whatever it is) will lead
to optimal or near optimal results in a particular problem? Clearly, as scientists,

18 Chapter 1 / A Gentle Introduction to Genetic Algorithms

engineers, and business managers we need to understand the what and the how
of genetic algorithm performance.

To obtain this understanding, we examine the raw data available for any
search procedure and discover that we can search more effectively if we exploit
important similarities in the coding we use. This leads us to develop the impor-
tant notion of a similarity template, or schemd. This in turn leads us to a key-
stone of the genetic algorithm approach, the building block bypothesis.

GRIST FOR THE SEARCH MILL—IMPORTANT SIMILARITIES

For much too long we have ignored a fundamental question. In a search process
given only payoff data (fitness values), what information is contained in a popu-
lation of strings and their objective function values to help guide a directed
search for improvement? To ask this question more clearly, consider the strings
and fitness values originally displayed in Table 1.1 from the simulation of the
previous section (the black box problem) and gathered below for convenience:

String Fitness
01101 169
11000 576
01000 64
10011 361

What information is contained in this population to guide a directed search for
improvement? On the face of it, there is not very much: four independent samples
of different strings with their fitness values. As we stare at the page, however,
quite naturally we start scanning up and down the string column, and we notice
certain similarities among the strings. Exploring these similarities in more depth,
we notice that certain string patterns seem highly associated with good perfor-
mance. The longer we stare at the strings and their fitness values, the greater is
the temptation to experiment with these high fitness associations. It seems per-
fectly reasonable to play mix and match with some of the substrings that are
highly correlated with past success. For example, in the sample population, the
strings starting with a 1 seem to be among the best. Might this be an important
ingredient in optimizing this function? Certainly with our function (f(x) = x?)
and our coding (a five-bit unsigned integer) we know it is (why is this true?).
But, what are we doing here? Really, two separate things. First, we are seeking
similarities among strings in the population. Second, we are looking for causal
relationships between these similarities and high fitness. In so doing, we admit a
wealth of new information to help guide a search. To see how much and precisely

Similarity Templates {Schemata) 19

what information we admit, let us consider the important concept of a schena
(plural, schemata), or similarity template.

SIMILARITY TEMPLATES (SCHEMATA)

In some sense we are no longer interested in strings as strings alone. Since im-
portant similarities among highly fit strings can help guide a search, we question
how one string can be similar to its fellow strings. Specifically we ask, in what
ways is a string a representative of other string classes with similarities at certain
string positions? The framework of schemata provides the tool to answer these
questions.

A schema (Holland, 1968, 1975) is a similarity template describing a subset
of strings with similarities at certain string positions. For this discussion, let us
once again limit ourselves without loss of generality to the binary alphabet {0,1}.
We motivate a schema most easily by appending a special symbol to this alphabet;
we add the * or don’t care symbol. With this extended alphabet we can now
create strings (schemata) over the ternary alphabet {0, 1, *}, and the meaning of
the schema is clear if we think of it as a pattern matching device: a schema
matches a particular string if at every location in the schema a 1 matches a 1 in
the string, a O matches a 0, or a * matches either. As an example, consider the
strings and schemata of length 5. The schema *0000 matches two strings, namely
{10000, 00000}. As another example, the schema *111* describes a subset with
four members {01110, 01111, 11110, 11111}. As one last example, the schema
0*1** matches any of the eight strings of length 5 that begin with a 0 and have a
1 in the third position. As you can start to see, the idea of a schema gives us a
powerful and compact way to talk about all the well-defined similarities among
finite-length strings over a finite alphabet. We should emphasize that the * is only
a metasymbol (a symbol about other symbols); it is never explicitly processed
by the genetic algorithm. It is simply a notational device that allows description
of all possible similarities among strings of a particular length and alphabet.

Counting the total number of possible schemata is an enlightening exercise.
In the previous example, with / = 5, we note there are 3-3-3-3-3 = 3° = 243
different similarity templates because each of the five positions may be a 0, 1,
or *. In general, for alphabets of cardinality (number of alphabet characters) &,
there are (k + 1) schemata. At first blush, it appears that schemata are making
the search more difficult. For an alphabet with & elements there are only (only?)
k' different strings of length I Why consider the (£ + 1) schemata and enlarge
the space of concern? Put another way, the length 5 example now has only 2° =
32 different alternative strings. Why make matters more difficult by considering
3° = 243 schemata? In fact, the reasoning discussed in the previous section makes
things easier. Do you recall glancing up and down the list of four strings and
fitness values and trying to figure out what to do next? We recognized that if we
considered the strings separately, then we only had four pieces of information;

20

Chapter 1 / A Gentle Introduction to Genetic Algorithms

however, when we considered the strings, their fitness values, and the similaritics
among the strings in the population, we admitted a wealth of new information to
help direct our search. How much information do we admit by considering the
similarities? The answer to this question is related to the number of unique sche-
mata contained in the population. To count this quantity exactly requires knowl-
edge of the strings in a particular population. To get a bound on the number of
schemata in a particular population, we first count the number of schemata con-
tained in an individual string, and then we get an upper bound on the total num-
ber of schemata in the population.

To see this, consider a single string of length 5: 11111, for example. This
string is 2 member of 2° schemata because each position may take on its actual
value or a don’t care symbol. In general, a particular string contains 2’ schemata.
As a result, a population of size n contains somewhere between 2/ and n-2' sche-
mata, depending upon the population diversity. This fact verifies our earlier in-
tuition. The original motivation for considering important similarities was to get
more information to help guide our search. The counting argument shows that a
wealth of information about important similarities is indeed contained in even
moderately sized populations. We will examine how genctic algorithms effec-
tively exploit this information. At this juncture, some parallel processing appears
to be needed if we are to make use of all this information in a timely fashion.

These counting arguments are well and good, but where does this all lead?
More pointedly, of the 2/ to n-2/ schemata contained in a population, how many
are actually processed in a useful manner by the genetic algorithm? To obtain the
answer to this question, we consider the effect of reproduction, crossover, and
mutation on the growth or decay of important schemata from generation to gen-
eration. The effect of reproduction on a particular schema is easy to determine;
since more highly fit strings have higher probabilities of selection, on average we
give an ever increasing number of samples to the observed best similarity pat-
terns (this is a good thing to do, as is shown in the next chapter); however,
reproduction alone samples no new points in the space. What then happens to a
particular schema when crossover is introduced? Crossover leaves a schema un-
scathed if it does not cut the schema, but it may disrupt a schema when it does.
For example, consider the two schemata 1***0 and **11*. The first is likely to be
disrupted by crossover, whereas the second is relatively unlikely to be destroyed.
As a result, schemata of short defining length are left alone by crossover and
reproduced at a good sampling rate by reproduction operator. Mutation at nor-
mal, low rates does not disrupt a particular schema very frequently and we are
left with a startling conclusion. Highly fit, short-defining-length schemata (we call
them building blocks) are propagated generation to generation by giving expo-
nentially increasing samples to the observed best; all this goes in parallel with no
special bookkeeping or special memory other than our population of # strings.
In the next chapter we will count how many schemata are processed usefully in
each generation. It turns out that the number is something like #°. This compares
favorably with the number of function evaluations (n). Because this processing
leverage is so important (and apparently unique to genetic algorithms), we give
it a special name, implicit parallelism.

Learning the Lingo 21

LEARNING THE LINGO

The power behind the simple operations of our genetic algorithm is at least in-
tuitively clearer if we think of building blocks. Some questions remain: How do
we know that building blocks lead to improvement? Why is it a near optimal
strategy to give exponentially increasing samples to the best? How can we cal-
culate the number of schemata usefully processed by the genctic algorithm?
These questions are answered fully in the next chapter, but first we need to mas-
ter the terminology used by researchers who work with genetic algorithms. Be-
cause genetic algorithms are rooted in both natural genetics and computer
science, the terminology used in the GA literature is an unholy mix of the natural
and the artificial. Until now we have focused on the artificial side of the genetic
algorithm’s ancestry and talked about strings, alphabets, string positions, and the
like. We review the correspondence between these terms and their natural coun-
terparts to connect with the growing GA literature and also to permit our own
occasional slip of a natural utterance or two.

Roughly speaking, the strings of artificial genetic systems are analogous to
chromosomes in biological systems. In natural systems, one or more chromo-
somes combine to form the total genetic prescription for the construction and
operation of some organism. In natural systems the total genetic package is called
the genotype. In artificial genetic systems the total package of strings is called a
structure (in the carly chapters of this book, the structure will consist of a single
string, so the text refers to strings and structures interchangeably until it is nec-
essary to differentiate between them). In natural systems, the organism formed
by the interaction of the total genetic package with its environment is called the
phenotype. In artificial genetic systems, the structures decode to form a partic-
ular parameter set, solution alternative, or point (in the solution space). The
designer of an artificial genetic system has a variety of alternatives for coding
both numeric and nonnumeric parameters. We will confront codings and coding
principles in later chapters; for now, we stick to our consideration of GA and
natural terminology.

In natural terminology, we say that chromosomes are composed of genes,

i which may take on some number of values called alleles. In genetics, the position
of a gene (its locus) is identified separately from the gene’s function. Thus, we
can talk of a particular gene, for example an animal’s eye color gene, its locus,
position 10, and its allele value, blue eyes. In artificial genetic search we say that
strings are composed of features or detectors, which take on different values.
Features may be located at different positions on the string. The correspondence
between natural and artificial terminology is summarized in Table 1.3.
i Thus far, we have not distinguished between a gene (a particular character)
and its locus (its position); the position of a bit in a string has determined its
meaning (how it decodes) uniformly throughout a population and throughout
time. For example, the string 10000 is decoded as a binary unsigned integer 16
(base 10) becausc implicitly the 1 is in the 10’s place. It is not necessary to limit
codings like this, however. A later chapter presents more advanced structures
that treat locus and gene separately.

