
Evolving Intelligence
Lecture 13 I400/I590

Artificial Life as an approach to Artificial Intelligence

Larry Yaeger
Professor of Informatics, Indiana University



Evolution is a Tautology
• That which survives, persists.
• That which reproduces, increases its numbers.
• Things change.

• Any little niche…
• “The cheapest, least intensively designed system will

be ‘discovered’ first by Mother Nature, and myopically
selected.” — Dennett (Kinds of Minds)



Evolutionary Algorithms
• Genetic Algorithms are powerful optimizers

• Good for common engineering tasks, ranging from
airfoil design to plant layout

• Good for management tasks, such as timetables,
resource scheduling, and packet routing

• Even good for evolving learning algorithms and
simulated organisms and behaviors



Evolutionary Algorithms
• Making them open-ended is a challenge

• Many niches and niche creation
- GAs are good at exploring multiple, simultaneous solutions

• Self-interpreting digital DNA, artificial chemistries
• Development processes, responsive to environment
• Neutral mutations



Evolutionary Constraints
• Evolution is often constrained by its previous successes

• Can’t afford to lose fitness, even in order to gain it
• Unable to start from scratch and compete with

existing successes
• Disrupting any existing function may reduce fitness
• Disrupting metabolic pathways may be fatal



Nervous Systems
• Evolution found and stuck with nervous systems for

controlling behavior at all levels of complexity
• Networks of neurons and synaptic connections
• Provide all behaviors—including anything that might

be considered intelligence—in all organisms more
complex than plants, c. elegans to homo sapiens

• Some behaviors are innate, so the wiring diagram
must matter

• Some behaviors are learned, so learning—phenotypic
plasticity—must also matter



Plasticity in Function

Mriganka Sur, et al
Science 1988, Nature 2000

Orientation maps:



Plasticity in Wiring

Mriganka Sur, et al  Nature 2000

Patterns of long-range horizontal connections in V1, normal A1, and rewired A1:



Wiring Diagram Matters
• Relative consistency of brain maps across large populations
• Infants predisposed to focus on two dark spots separated

by a lighter space between them (face priming)
• Lesion/aphasia studies illustrate specific, limited effects

• Injury to hippocampus can cause a loss of ability to store new
memories

• Lesions of prefrontal cortex can eliminate ability to plan for
the future, make rational decisions, and process emotion

• Moderate stroke damage to occipital lobe can induce rare
Charcot-Wilbrand syndrome (loss of dreams)

• Scarcity of tissue in localized portion of visual system is
method of action for gene disorder, Williams Syndrome
(lack of depth perception, inability to assemble parts into
wholes)



Wiring Diagram + Learning
= Brain Maps



Motor Cortex Map



Real & Artificial Brain Maps

Monkey Cortex, Blasdel and Salama Simulated Cortex, Ralph Linsker

Distribution of orientation-selective cells in visual cortex



Neuronal Cooperation

John Pearson, Gerald Edelman



Neuronal Competition

John Pearson, Gerald Edelman



The Brain Story So Far…
• Brain maps are good
• Brain maps are derived from

• General purpose learning mechanism
• Suitable wiring diagram

• Artificial neural networks capture key features of
biological neural networks using
• Hebbian learning
• Suitable wiring diagram



How to Proceed?
• Design a suitable neural architecture

• Simple architectures are easy, but are limited to
simple (but robust) behaviors
- W. Grey Walter’s Turtles
- First few Valentino Braitenberg Vehicles (#1-5, of 14)

• Complex architectures are much more difficult
- We know a lot about neural anatomy
- There’s a lot more we don’t know
- It is being tried – Steve Grand’s Lucy



How to Proceed?
• Evolve a suitable neural architecture

• It ought to work
- Valentino Braitenberg’s Vehicles (#6 and higher)

• We know it works
- Genetic Algorithms (computational realm)
- Natural Selection (biological realm)



Is There Really Any Hope?
• Danny Hillis (“Intelligence as an Emergent Behavior”,

Daedalus 1988) observes
“It would be convenient if intelligence were an
emergent behavior of randomly connected neurons in
the same sense that snowflakes and whirlpools are
emergent behaviors of water molecules.”

• From Cog Sci/Psychology experiments he estimates
that a model brain would need 109 bits and 1011 bits/sec
memory access to support human-level thought (“plus
or minus two orders of magnitude”)



Progress with Limited Understanding
• Hillis points to successes with emergent systems

developed with limited knowledge (either deliberately or
unavoidably):
• Cellular automata models of fluid flow

- Unit mass, unit speed particles on a hexagonal lattice,
behaving as billiard balls, produce laminar, vortical, and
turbulent flows “indistinguishable from the behavior of real
fluids”

• Computational models of evolutionary biology
- Evolved sorting algorithms that compete with the best

human-designed algorithms
to show how “Even a little understanding could go a long
way toward the construction of an emergent system.”



Low Complexity High

Measuring Progress

Spectrum of Life and Intelligence



Graduated Intelligence
• Darwin wrote (The Descent of Man, and Selection in

Relation to Sex 1871, 1927, 1936)
“If no organic being excepting man had possessed
any mental power, or if his powers had been of a
wholly different nature from those of the lower
animals, then we should never have been able to
convince ourselves that our high faculties had been
gradually developed.  But it can be shewn that there
is no fundamental difference of this kind.  We must
also admit that there is a much wider interval in
mental power between one of the lowest fishes, as a
lamprey or lancelet, and one of the higher apes, than
between an ape and a man; yet this interval is filled
up by numberless gradations.”



Graduated Intelligence
• “A conservative hypothesis: ‘Sentience’ comes in every

imaginable grade or intensity, from the simplest and
most ‘robotic’, to the most exquisitely sensitive, hyper-
reactive ‘human’.” — Dennett (Kinds of Minds)

• Tononi (BMC Neuroscience 2004) discussing a
quantitative theory of consciousness based on his
information-theoretic Phi:
• “It also follows that consciousness is not an all-or-

none property, but it is graded: to varying degrees,
it should exist in most natural (and artificial)
systems.”



Measuring Intelligence
• Seth, Izhikevich, Reeke, Edelman in Theories and

measures of consciousness: An extended framework
(PNAS 2006)

“The existence of quantitative measures of relevant
complexity, however preliminary they may be, raises
the important issue of identifying the ranges of values
that would be consistent with consciousness. … it may
then become possible to define a measurement scale
for a proposed measure of relevant complexity by
establishing a value for a known conscious system (for
example, an awake human) and a value for a known
nonconscious system (for example, the same human
during dreamless sleep).”



Spectrum of Intelligence
• Laboratory evidence exists for self-awareness in

humans, chimpanzees, orangutans, and elephants
• Koko the gorilla, Washoe the chimp, and Kanzi the

bonobo ape all demonstrate language skills
comprehensible to humans

• Alex the parrot demonstrates language skills
comprehensible to humans

• Betty the crow demonstrates tool creation
• Various simians and birds in the wild demonstrate tool

use and creation
• Scrub-jays project their own behaviors onto that of

conspecifics (exhibit a “theory of mind”) and
demonstrate planning for the future



Spectrum of Intelligence
• Honeybees, with 1M neurons, interpolate visual

information, exhibit associative recall, categorize visual
information, learn contextual information, and
demonstrate the ability to learn the abstract concepts
same and different

• Fruit flies, with 250K neurons, learn by association,
have short-term, medium-term, and long-term
memories, with a short-term working memory of about
5 seconds (comparable to pigeons and other bird
species), respond to anesthesia at comparable doses
and with progressive loss of brain function like humans,
and exhibit a salience mechanism with much in common
with the human attention mechanism

• Even with only about 10K neurons, Aplysia californica
demonstrates sensitization, habituation, classical, and
operant conditioning





PolyworldPolyworld



Not affiliated with…



What Polyworld Is
• An electronic primordial soup experiment

• Why do we get science, instead of ratatouille?
- Right ingredients in the right pot under the right conditions

• An attempt to approach artificial intelligence the way
natural intelligence emerged:
• Through the evolution of nervous systems in an ecology

• An opportunity to work our way up through the
intelligence spectrum

• Tool for evolutionary biology, behavioral ecology,
cognitive science



What Polyworld Is Not
• Fully open ended

• Even natural evolution is limited by physics (and
previous successes)

• Accurate model of microbiology
• Accurate model of any particular ecology

• Though it is possible to model specific ecologies
• Accurate model of any particular organism’s brain

• Though many neural models are possible
• A strong model of ontogeny



Polyworld Overview
• Computational ecology
• Organisms have genetic structure and evolve over time
• Organisms have simulated physiologies and metabolisms
• Organisms have neural network “brains”

• Control all behaviors
• Arbitrary, evolved neural architectures
• Hebbian learning at synapses

• Organisms perceive their environment through vision
• Fitness is determined by Natural Selection alone

• Bootstrap “online GA” if required





Genetics:  Physiology Genes
• Size
• Strength
• Maximum speed
• Mutation rate
• Number of crossover points
• Lifespan

• Fraction of energy to offspring

• ID   (mapped to body’s green color component)



Genetics:  Neurophysiology Genes
• # of neurons for red component of vision
• # of neurons for green component of vision
• # of neurons for blue component of vision

• # of internal neuronal groups

• # of excitatory neurons per group
• # of inhibitory neurons per group
• Initial bias of neurons per group
• Bias learning rate per group

• Connection density per pair of groups & types
• Topological distortion per pair of groups & types
• Learning rate per pair of groups & types



Processing Units

Neural Architectures for
Controlling Behavior using Vision

Move

Turn

Eat

Mate

Fight

Light

Focus
Energy

Random

Input Units



Neural Development
• Generative statistical model may be thought of as

capturing the end result of a development process
• Same genetic code may produce multiple distinct

phenotypes
• Synaptic weights initialized randomly
• 25 time steps of random noise provided as input to

vision system to allow some self-organization (before
being placed into the world)



Physiology and Metabolism
• Energy is expended by behavior & neural activity
• Size and strength affect behavioral energy costs

(and energy costs to opponent when attacking)
• Neural complexity affects mental energy costs
• Size affects maximum energy capacity
• Energy is replenished by eating food

(or other organisms)
• Health energy is distinct from Food-Value energy
• Body is scaled by size and maximum speed



Perception:  Neural System Inputs
• Vision
• Internal energy store
• Random noise



Behavior:  Neural System Outputs
• Primitive behaviors controlled by single neuron

• “Volition” is level of activation of relevant neuron

• Move
• Turn
• Eat
• Mate   (mapped to body’s blue color component)
• Fight   (mapped to body’s red color component)
• Light
• Focus



Behavior Sample:  Eating



Behavior Sample:  Killing & Eating



Behavior Sample:  Mating



Behavior Sample:  Lighting



Neural System:  Internal Units
• No prescribed function

• Neurons
• Synaptic connections



Evolving Neural Architectures



Neural System:
Learning and Dynamics
• Firing-rate / summing-and-squashing neuron model

• xi = ∑ ajt sijt
             j

• ait+1 = 1 / (1 + e-xi)

• Hebbian learning

• sijt+1 = sijt +  ckl (ait+1 - 0.5) (ajt - 0.5)!!

sijt  = synaptic efficacy from neuron j to neuron i at time t
ait     = neuronal activation of neuron i at time t 
  c

kl  = learning rate for connection of type c (e-e, e-i, i-e,
  or i-i) from cluster l to cluster k

!!



Neural Dynamics



Emergent Species:  “Joggers”



Emergent Species:
“Indolent Cannibals”



Emergent Species:  “Edge-runners”



Emergent Species:  “Dervishes”



Emergent Behavior:
Visual Response



Emergent Behavior:
Fleeing Attack



Emergent Behaviors:
Foraging, Grazing, Swarming



Ideal Free Distribution
in agents with

evolved neural architectures

Early

Middle

Late



Ideal Free Distribution in agents
with evolved neural architectures



Is It Alive?  Ask Farmer & Belin…
• “Life is a pattern in spacetime, rather than a specific

material object.”
• “Self-reproduction.”
• “Information storage of a self-representation.”
• “A metabolism.”
• “Functional interactions with the environment.”
• “Interdependence of parts.”
• “Stability under perturbations.”
• “The ability to evolve.”



Information Is What Matters
• "Life is a pattern in spacetime, rather than a specific

material object.” - Farmer & Belin (ALife II, 1990)
• Schrödinger speaks of life being characterized by and

feeding on “negative entropy” (What Is Life? 1944)
• Von Neumann describes brain activity in terms of

information flow (The Computer and the Brain, Silliman
Lectures, 1958)

• Physicist Edwin T. Jaynes identifies a direct connection
between Shannon entropy and physical entropy in 1957

• James Avery’s Information Theory and Evolution (2003):
Information storage transiently and locally defeats 2nd
law of thermodynamics, and is typical of life

• Informational functionalism
• It’s the process, not the substrate
• What can information theory tell us about living,

intelligent processes…



Energy -> Information -> Life
• In 1957 physicist Edwin T. Jaynes pointed out the direct

connection between Shannon entropy and physical
entropy

• Ludwig Boltzmann’s grave is embossed with his equation:
S = k log W
Entropy = Boltzmann’s-constant

 * log( function of # of possible micro-states )
• Claude E. Shannon’s famous measure of information (or

uncertainty or entropy) can be written:
I = K log Ω
Entropy = constant (usually dropped)

 * log( function of # of possible micro-states )



Energy -> Information -> Life
• John Avery (Information Theory and Evolution) related

physical entropy to informational entropy as
1 electron volt / kelvin  =  16,743 bits

• So converting one electron-volt of energy into heat, at
room temperature will produce an entropy change of

1 electron volt / 298.15 kelvin  =  56.157 bits
• Thus energy, such as that which washes over the Earth

from the Sun, can be seen as providing a constant flow of
not just “free energy”, but free information

• Living systems take advantage of, and encode this
information, temporarily and locally reducing the
conversion of energy into entropy



Mutual Information

Information and Complexity
• Chris Langton’s “lambda” parameter (ALife II)

• Complexity = length of transients
• λ = # rules leading to nonquiescent state / # rules

I

II

IV

III

Wolfram's CA classes:

  I = Fixed
 II = Periodic
III = Chaotic
 IV = Complex

0.0 1.0
Low

High

Complexity

λc
Lambda

Normalized Entropy

• Crutchfield:  Similar results measuring complexity of
  finite state machines needed to recognize binary strings
• Tononi, Sporns, Edelman:  Similar results measuring
   complexity of dynamics in artificial neural networks



Complexity

non-repeating structure
at multiple levels 

identical structure 
at all levels

“What clashes here of wills gen wonts,
oystrygods gaggin fishygods! Brékkek Kékkek
Kékkek Kékkek! Kóax Kóax Kóax! Ualu
Ualu Ualu! Quáouauh!”

randomness,
no structure at any level

“Happy families are all alike; every unhappy
family is unhappy in its own way.”

“All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.”



Integration

H{xi} is the entropy of the ith individual element xi
H(X) is the joint entropy of the entire system X

Note, I(X) ≥ 0.
Note, I(X) = 0 if all elements are statistically independent

Integration measures the statistical dependence among all
elements {xi} of a system X.

i=1

n
I(X) = ΣH{xi} − H(X)

Any amount of structure (i.e. connections) within the system will
reduce the joint entropy H(X) and thus yield positive integration.

MI(x1,x2) = H(x1) + H(x2) – H(x1x2)

Tononi, Sporns, Edelman, PNAS (1994)



Information and Complexity
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Integration

CN(X) = ∑ [(k/n) I(X) – <I(Xk)>]
k=1

n

• Complexity, as expressed in terms of the ensemble average
   of integration (structure) at all levels:

I(X) – total integration

Tononi, Sporns, Edelman, PNAS (1994)

=  Σ <MI(Xk; X−Xk)>k=1

n/2



Simpler Complexity

CN(X) = Σ [(k/n) I(X) − <I(Xk)>]
k=1

n

C(X) = H(X) – ΣiH(xiX–xi)
        = ΣiMI(xi,X–xi) – I(X)
        = (n–1)I(X) – n<I(X–xi)>



Quantifying Life and Intelligence
• Measure state and compute complexity
• What complexity?

• Mutual Information
• Sporns’s functional complexity
• Tononi’s Phi
• Adami’s “physical” complexity
• Gell-Mann & Lloyd’s “effective” complexity

• What state?
• Chemical composition
• Electrical charge
• Aspects of behavior or structure
• Neuronal states

• Other issues
• Scale, normalization, sparse data



Information Metrics:
Entropy



Information Metrics:
Mutual Information



Information Metrics:
Integration & Complexity



Is there an evolutionary
 “arrow of complexity”?
• Yes – Darwin, Lamarck, Cope, Spencer, Huxley, Rensch,

Stebbins, Waddington, Saunders and Ho, Wake, Bonner,
Ayala, Arthur, Lewin, Valentine, McShea

• No – Williams, Lewontin, Levins, Slobodkin, Gould, McShea

Carroll (2001)

Didacus Valades,
Rhetorica Christiana
1579

Great Chain
of Being

Gould (1994)



Natural and Artificial
Trends in Complexity
• Bedau (et al. 1997, Rechsteiner and Bedau 1999)

provides evidence of an increasing and accelerating
“evolutionary activity” in biological systems not yet
demonstrated in artificial life models

• Turney (1999) uses a simple evolutionary model to
suggest that evolvability is central to progress in
evolution, and predicts an accelerating increase in
biological systems

• Adami (2000, 2002) defines complexity as the
information that an organism’s genome encodes about
its environment and demonstrates that asexual agents
in a fixed, single niche evolve towards greater
complexity



Sources of Complexity Growth
• Rensch (1960a,b; Bonner 1988) argued that more parts

will allow a greater division of labor among parts
• Waddington (1969; Arthur 1994; Knoll and Bombach

2000) suggested that due to increasing diversity
niches become more complex, and are then filled with
more complex organisms

• Saunders and Ho (1976; Katz 1987) claim component
additions are more likely than deletions, because
additions are less likely to disrupt normal function

• Kimura (1983; Huynen 1995; Newman and Englehardt
1998) demonstrated value of neutral mutations in
bridging gulfs in fitness landscape, through selection
for function in previously neutral changes



What Kind of Complexity?
• McShea (1996) observes that loose and shifting

definitions of complexity allow sloppy reasoning and
highly suspect conclusions about evolutionary trends

• Identifies four distinct categories of complexity
• Number of different parts (genes, cells, organs)
• Number of different interactions between parts
• Number of hierarchical levels
• Number of parts or interactions at a given scale

• Suggests there may be upper limits to complexity
• Discusses (limited) evidence for increases in number of

cell types, arthropod limb types, and vertebrae sizes
• Acknowledges complexity of human brain, but otherwise

ignores nervous systems
• Distinguishes driven vs. passive trends, using changes in

minimum values and ancestor-descendent differences



Driven or Passive?
• Original experiments did not address the distinction

between driven and passive sources of complexity
• Established ability to compute neural complexity of

Polyworld agents
• Demonstrated increase in complexity as evolution

proceeds
• Current experiments directly assess driven vs. passive

contributions to complexity resulting from natural
selection



Natural Selection vs. Random Drift
• By default Polyworld agents are subject to natural

selection
• Genes are passed on as a direct result of success at

survival and reproduction
• Goal:  Produce a random drift of agent genes in

Polyworld in a simulation that is directly comparable to
a standard, natural selection run
• Same initial conditions
• Same population statistics

- Same statistics for genetic mutations and crossover
operations



Eliminating Natural Selection
• Run standard simulation, logging all births and deaths
• Run random-drift simulation, with following conditions:

• Use identical initial conditions
• Eliminate behaviorally generated births and deaths
• At each time step, for every birth in the standard

run, select two parents at random and produce their
offspring
- Deposit the offspring at a random location

• At each time step, for every death in the standard
run, select one agent at random and kill it

• Produces identical statistics for population genetics
and comparable visual inputs (“life experiences”) to
agents in the two simulations

• Natural selection no longer affects gene histories



Driven vs. Passive Mean Complexity



Driven vs. Passive Max Complexity



Genetic Similarity



Complexity
Histogram
Over Time -
Passive



Complexity
Histogram
Over Time -
Driven



Conclusions
• Evolution selects FOR a complexity increase when it enhances the

ability to survive and reproduce
• Evolution selects mildly AGAINST a complexity increase when existing

characteristics are “good enough”
• Though not shown by these experiments, evolution is known to

select AGAINST unneeded but costly complexity
• At the level of species, evolution of complexity is almost always driven

• Just not in a single direction
• Integrating these opposing tendencies over the history of life, may

appear passive
• But ever-increasing “ecospace” may provide an overarching drive

towards complexity as well
• Conflicting evidence for complexity growth in the biological record is

to be expected
• Seemingly conflicting intuitions about a clear evolution of complexity in

the paleontological record vs., for example, the longevity of the
cockroach and its extreme suitability to its ecological niche are not
actually in conflict



Speculation
• Though current experiments effectively explore

complexity dynamics only in a single niche, for hardly
more than a single species…
• Multiple niches, niche creation, and potential arms

races associated with competition within a niche are
all likely to confer an evolutionary advantage on at
least some complexity increases

• Inherently more complex niches will require greater
biological complexity
- All niches are not created equal

• Increasing the complexity of Polyworld’s
ecology—the range of organism-environment
interactions and available niches—will allow a
measurable selection towards greater neural
complexity



Future Directions
• Explore use of complexity measure as fitness function

• More environmental interaction
• Pick up and put down

- Pieces of food
- Pieces of barrier
- Other agents

• More complex environment
• More control over more organic food growth

patterns
• Multiple food types

• Additional senses (definitely touch, perhaps smell)
• More complex, spiking neural models
• Assess progress by routinely measuring complexity



Future Directions
• Behavioral Ecology benchmarks

• Optimal foraging (profitability vs. predation risk)
• Patch selection/depletion (Ideal Free Distribution)
• Vancouver whale populations

• Evolutionary Biology problems
• Speciation = ƒ (population isolation)
• Altruism = ƒ (genetic similarity)

• Classical conditioning, intelligence assessment
experiments



Future Directions
• Source code is available

for Mac/Windows/Linux (on Qt) at
http://sourceforge.net/projects/polyworld/

• Papers and other materials at
http://beanblossom.in.us/larryy/Polyworld.html


