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Adaptation
• Organisms learn useful adaptations during their lifetime
• These adaptations embody knowledge about the

environment gained through exploration and
experimentation

• It seems wasteful to lose this knowledge between
generations

• Lamarckian evolution would be the obvious solution:
Transfer acquired knowledge back into the genome
• However, so far, Lamarckian evolution has never been

substantiated in any biological system



Waste Not, Want Not
• In the absence of Lamarckian evolution, one might

conclude that lifetime learning cannot impact evolution
• One would be wrong
• Learning can be very effective in guiding evolutionary

search
• Even when that learning is not communicated to the

genotype
• Even when that learning is unrelated to specific

survival tasks or the fitness selection criteria



The “Baldwin Effect”
• Useful adaptations allow an organism to survive and

reproduce, increasing its evolutionary fitness
• Evolution then selects for organisms that are ever

more capable of learning these adaptations



The Baldwin Effect & Innateness
• Such adaptations may keep organisms alive long enough,

and populous enough, for evolution to select for
organisms in which the adaptations are innate
• Evolution in the direction of innateness may make

the learning easier
• Innateness may be more efficient in both consumed

resources and reaction time
• Such adaptations may restructure the environment so

as to foster evolution of heritable versions of the
relevant traits



History
• James Mark Baldwin, in 1895 & 1896, describes “Organic

Selection”, a mechanism by which evolutionary fitness
prefers solutions capable of better adaptation
• Specifically notes Lamarckian-style influences

without the need for Lamarckian transfer of acquired
characteristics to the genome

• A New Factor in Evolution and other papers in 1896
are primary, but 1895’s book, Mental Development in
the Child and the Race, first broaches the subject

• Refers to work of C. Lloyd Morgan and Henry Osborn



History
• Conwy Lloyd Morgan, in 1896, publishes Emergent

Evolution, using similar reasoning and espousing the
same effect
• Better known for Morgan’s Canon, a kind of Occam’s

Razor for Psychology:
"In no case may we interpret an action as the outcome of the
exercise of a higher psychical faculty, if it can be interpreted
as the outcome of one which stands lower in the psychological
scale."



History
• Henry Fairfield Osborne, in 1896, publishes A mode of

evolution requiring neither natural selection nor the
inheritance of acquired characteristics, also proposing
this phenomenon under the name “coincident selection”



History
• Controversy exists over who published first

• Morgan spoke immediately prior to Baldwin at the
same conference where these ideas were first
presented orally

• Osborn published a few days before Baldwin’s 1896
papers

• Term “Organic Selection” used more broadly in first
edition of 1895 Mental Development… book



History
• Conrad Hal Waddington, in 1942, publishes Canalization

of Development and the Inheritance of Acquired
Characters, proposing a similar “genetic assimilation”
feedback mechanism between developmental processes
and natural selection
• Variable ontogenetic responses to environmental

conditions, that confer an evolutionary advantage on
organisms, may then be selected for in a heritable
form



Biological Evidence
• Limited evidence or references under the name

“Baldwin effect” in evolutionary biology literature
• There is related support in the area of “niche creation”
• Waddington’s own experiments (1952 and later) with

Drosophila demonstrate developmental equivalent
• Heat applied during embryonic development

produces reduction in wing veins
• After several generations of selecting for organisms

most responsive to embryonic application of heat,
reduction in wing veins persists in large fraction of
offspring without the application of heat



Computational Modeling Evidence
• Strong evidence in this realm
• We are reading the classic 1987 paper by Geoff Hinton

and Steve Nowlan, entitled How Learning Can Guide
Evolution

• Imagine an organism containing a neural net with many
potential connections, only one configuration of which
confers additional evolutionary fitness
• This is a worst-case fitness landscape, consisting of

a flat plane everywhere, except for a single spike
• “The good net is like a needle in a haystack.”

(Note that this being a “neural net” is irrelevant; what we have is a
20-dimensional state space, with only one “good” state.)



Fitness

Possible Net Architectures

A Needle in a Haystack
• Now let organisms “learn” during their lifetimes

• “It is like searching for a needle in a haystack when
someone tells you when you are getting close.”



Simulating the Baldwin Effect
• The neural net has 20 potential connections
• The genotype has 20 genes (one per connection)

• Each gene has 3 states (alleles)
- 0:  connection is absent
- 1:  connection is present
- ?:  connection may be switched between absent and

     present by lifetime “learning”



“Learning”
• Learning consists of randomly flipping all switches on

every trial
• If the single, correct network is ever generated as a

result of learning, the switches are frozen, else they
continue to change with each time step

• Note that gradient descent is not possible with this
algorithm
• But flipping the switched connections does explore

the space in the vicinity of the innate genetic
prescription



GA Parameters
• 1000 organisms in each generation
• 1000 learning trials performed by each organism during

its lifetime
• Initial 1000 organisms generated by selecting each

allele randomly, with probability of 0.5 for ? and 0.25
for 0 and 1

• Note that since, on average, there are 210 possible
states to be explored by switching and there are
approximately that number of learning trials, there is a
reasonable chance that an organism with the correct
genetically specified connections may learn the correct
specification of the remaining 10 connections



GA Parameters
• 1000 offspring are generated from pairs of organisms

chosen randomly with a probability that is proportional
to 1 + 19n/1000
• n = number of learning trials that remain after the

organism has learned the correct network
• An organism that learns the correct solution

immediately will be 20 times as likely to reproduce
as an organism that fails to learn the correct
solution

• Offspring are generated using single-point crossover



Evolution of Alleles



Learning Guides Evolution
• Total number of organisms generated was far less than

the 220 that would be expected to find the solution by
a random or purely evolutionary search
• Despite the fact that learning was itself a random

search over 210 settings (slightly fewer as evolution
converged)
- More structured learning should only enhance the effect

• Number of learned connections not significantly
reduced

• The same problem was never solved by an evolutionary
search without learning



More Computational Evidence
• Another of our readings, Learning, Behavior, and

Evolution, from 1991, by Domenico Parisi, Stefano
Nolfi, and Federico Cecconi, extends Hinton & Nowlan’s
work

• Provides evidence for the Baldwin effect in
• Structured learning
• Non-adaptive learning

(learning of tasks not intrinsically correlated with fitness
or the selection criteria)



Learning, Behavior, and Evolution
• Demonstrates evolutionary selection of learnability

(again for both fitness-correlated and -uncorrelated
tasks)

• Shows how self-selection of incoming stimuli can guide
evolution

• Suggests a consistent explanation of all these effects
in terms of synaptic weight spaces and fitness
landscapes



Simulation Setup
• Organisms (O) live on a 2D grid containing randomly

distributed pieces of food
• Each O is modeled by a feedforward neural network

• Inputs are normalized (0.0 to 1.0)
angle and distance to nearest food

• Plus previous time-step’s outputs
• Outputs are a coded representation

of four possible outcomes:
- Move forward
- Turn left
- Turn right
- Stay still



Simulation Setup
• Seed a population with 100 organisms
• Initialize network weights randomly
• Os “live” for 20 epochs, where an epoch consists of:

• 50 actions in each of 5 different environments
(results in 250 actions per epoch, 5000 actions total)

• Environment is a grid of cells with 10 randomly
distributed pieces of food

• Os are placed in individual copies of the environment
(i.e., they live in isolation)



Reproduction
• After 20 epochs, the 20 Os which have accumulated the

most food in the course of their movements are allowed
to reproduce by generating 5 copies of their weight
matrix

• Mutations are introduced by selecting 5 weights at
random and adding a random value between -1.0 and +1.0

• This process continues for 50 generations



With and Without Learning
• The experiment just described is first run without

learning, so the weights are static throughout the Os’
lives

• The same experiment is then run
with the Os learning to predict at
time T the sensory input they will
perceive at time T+1 (given the
motor action they take at time T)
• Uses Backprop
• Learned weight changes are

discarded (only genetically
selected weights are
propagated to offspring)



Evolution With and Without
Learning



Evolution Guides Learning
• Parisi et al state that the difference between those

two curves cannot be explained solely on the basis of
lifetime learning

• Evolution had to select for better initial
conditions—better performance at birth and better
learnability—in order to account for the magnitude of
the observed difference



How Evolution Guides Learning
• Think of the set of possible weights as a high-

dimensional space, with one more dimension that
corresponds to evolutionary fitness

• Learning then explores that
fitness landscape in the
vicinity of the site defined
by purely evolutionary fitness

• Learning thus lets evolution
preferentially select for
genotypes that will produce
fitter phenotypes, even when that greater fitness
cannot be discerned from genotypical fitness



How Evolution Guides Learning
• Since the average fitness of an organism’s offspring

will be determined by the neighborhood of the parent
organism’s genetic fitness, allowing evolution to select
for higher average learned fitness (from that same
neighborhood) also increases the average genetic
fitness of the offspring



Random Learning Guides Evolution
• Even when the prediction task is changed to predict

random output values, Parisi et al find that evolution is
accelerated, just not as much

• Might be explained by
selection for better initial
weight values (smaller)

• But even a random sampling
around the evolutionary
fitness site can yield a
better estimate of
potential fitness for offspring



Random Sampling Can Predict
Fitness

• The average fitness of points randomly sampled around
a  will be lower than the average fitness of points
randomly sampled around  b



All Learning is Not Equal
• Intelligent, structured exploration of the fitness

landscape would reasonably be expected to provide a
better estimate of potential fitness

• A random sampling around
a and b would produce the
same average, but learning
that explores the better
parts of the local fitness
landscape will produce a
higher average fitness
for b

• Also suggests that a meta-level search for better
learning algorithms would be of evolutionary value



Selection for Learning of
Related Tasks

• Analysis of the global error rate for the prediction
task at early and late generations demonstrates an
inheritance of the ability to learn the particular task,
although not directly of the ability to perform the task



An Unrelated Task
• Replace the input-stimuli prediction task with a task

unrelated to evolutionary fitness:  XOR
• An XOR output unit is

trained to have a value of
0.0 if both input units have
an activation which is
greater or less than 0.5,
and a value of 1.0 otherwise

• Selection is still based
entirely on performance on
the food gathering task



Selection for Learning of
Unrelated Tasks

• Analysis of the global error rate for the XOR task
again demonstrates an inheritance of the ability to
learn the task, although not directly of the ability to
perform the task



Correlated Sub-Regions of Fitness

• Even when the tasks are globally uncorrelated there
may be correlated sub-regions in the fitness landscape

• But there may also be regions of anti-correlation
• Here again there may be a simple, global initial weight

magnitude explanation



Phenotypic Variability
• For simplicity of discussion and analysis, we have so far

assumed that each genetically specified weight matrix
yields a single corresponding fitness value

• Actually, each such genetic specification may elicit a
variety of phenotypes, upon which selection acts, due to
• The particular environment in which the O live
• The sequence of experiences the O has
• The changes in subsequent input, and even the

environment, resulting from the O’s behavior



Influence of Behavior on Evolution
• An O’s behavior alters its subsequent input
• Os may evolve one of at least two strategies:

• Optimally handle all possible inputs
• Optimally handle a subset of possible inputs and

behave in such a way that they are more likely to
experience that subset of inputs

• To determine which strategy is being employed, divide
the perceived angle between the O and food (as
provided to its input unit), into 10 evenly distributed,
36º bins, and compute the frequency with which stimuli
in each bin are encountered by a particular O

or



A Preferred Orientation

• Note the asymmetry of stimulus occurrence near
0º/360º



Performance vs. Orientation

• Performance (decrease in the distance between the O
and the food after one action) is better for the
asymmetrically preferred orientations



Behavior-Dependent Performance

• Average single-step performance is much better when
the current food location depends on the O’s previous
action (standard case) vs. when the location is
randomized by reorienting the O at each time step



Behavior Guides Evolution
• At least some Os have evolved an orienting behavior

which, in turn, has guided evolution to optimize
behavior for these self-selected stimuli

• The ability to react efficiently to all classes of stimuli
(all relative food angles) is still of some evolutionary
value, because infrequent stimuli to which Os do not
respond optimally may still appear

• However, the benefits of such a generalized capacity
may be small compared to the benefits of the
specialized capacity to respond to self-selected stimuli,
so there may never be sufficient evolutionary pressure
for the generalized capacity to evolve



Evolution of Learning
• Having seen how learning and behavior can guide

evolution, our final reading assignment this week (David
Chalmers’s 1991 The Evolution of Learning: An
Experiment in Genetic Connectionism) shows how
learning itself may be evolved

• Chalmers speaks of learning as first-order adaptation,
and natural selection as second-order adaptation,
evolving and improving the ability to learn

• To explore the evolution of learning, he attempts to
evolve a supervised learning algorithm for a neural
network with a single layer of weights



Problem Statement
• Define

aj  =  activation of the input unit j
oi  =  activation of the output unit i
ti  =  the training or target value of output unit i
wij =  the connection strength from input j to output i

• The genome must encode
Δwij  =  F(aj, oi, ti, wij)



Problem Statement
• Choose a general quadratic form for F

 Δwij  = k0 (k1wij+ k2aj + k3oi+ k4ti + k5wijaj + 
      k6wijoi+ k7wijti + k8ajoi+ k9ajti + k10oiti)



Genetic Encoding
• Encode all 11 constants in a 35 bit genome

• First 5 bits code for the scale parameter k0
- First bit used for sign
- Remaining bits encode 1/256, 1/128, …, 32, 64

• Other 30 bits encode the 10 coefficients, using 3
bits per coefficient
- First bit used for sign
- Remaining bits encode 0, 1, 2, or 4



Task Definition
• Define 30 linearly separable classification tasks
• Randomly select 20 of these classification tasks for

each run
• Measure the performance of each learning algorithm in

the current population on all 20 tasks, as follows:
• Create a network with the appropriate number of

input units and one output unit
• Initialize the weights of the network randomly

between -1 and +1
• …



Task Definition
• Measuring performance, continued…

• For a number of epochs (typically 10) train on all
exemplars as follows:
- Propagate the input values through the network, yielding

output values
- Adjust the network weights according to the formula

specified by the genetically encoded learning algorithm
• At the end of this process, measure fitness by

testing the network on all training exemplars
- Divide the total error by the number of exemplars, subtract

from 1.0, and multiply by 100 to yield a fitness “percentage”
between 0 and 100

- A fitness percentage of 50 represents chance performance



Task Definition
• Note:  Limited number of epochs of training (10) means

learning is unlikely to be complete
• Even the known optimal Widrow-Hoff delta rule is

only 98% accurate
• Accordingly, the k0 scale factor combines with the

other terms to produce an overall learning rate which
may be significant



GA Parameters
• Population size is 40
• Reproduction is linearly proportional to fitness
• Subject 80% of each new generation to crossover

• Pairs of individuals swap a randomly selected
substring of bits

• Retain the best individual
• Mutate all bits with probability of 0.01
• Repeat process for some number of generations,

typically 1000



Results
• Best learning algorithms produced in 10 evolutionary runs

Widrow-Hoff delta rule
Widrow-Hoff delta rule

Slight variation on delta rule
Slight variation on delta rule



Effect of Diversity on
Evolution of Learning
• For the 10 runs just discussed

• Average fitness on the 20 training classification
tasks was 92.3%

• Average fitness on the 10 classification tasks that
were withheld from training was 91.9%

• This suggests the “environment” (of training tasks) was
sufficiently diverse to evolve a general purpose
learning algorithm, rather than one overly tailored to
the specific training data
• As we knew from the evolution of the delta rule

• But how much diversity is required to obtain this
generalization effect?



Effect of Diversity on
Evolution of Learning

• “Evolutionary Fitness” is calculated from the variable
number of training tasks, while “Test Fitness” is always
calculated for 10 randomly chosen tasks not used for
training



Credits
• Lecture based largely on the three reading assignments

G. E. Hinton and S. J. Nowlan. How learning can guide evolution.
Complex Systems, 1:495-502, 1987

Parisi, D., S. Nolfi, and F. Cecconi, "Learning, Behavior, and
Evolution", Tech. Rep. PCIA-91-14, Dept. of Cognitive Processes
and Artificial Intelligence, Institute of Psychology, C.N.R.,
Rome, June 1991. (Appeared in Proceedings of ECAL-91—First
European Conference on Artificial Life, December 1991, Paris;
also in Varela, F, Bourgine, P. Toward a practice of autonomous
systems, MIT Press, 1991)

Chalmers, D., "The Evolution of Learning: An Experiment in
Genetic Connectionism" in Connectionist Models, Proceedings of
the 1990 Summer School, edited by D. S. Touretzky, J. L.
Elman, T. J. Sejnowski, G. E. Hinton, Morgan Kaufmann, San
Mateo, CA, 1991
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