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It Starts with Probability 
•  Which starts with gambling 
•  In 1550 Cardan wrote a manuscript outlining the 

probabilities of dice rolls, points, and gave a rough 
definition of probability 
•  However, the document was lost and not discovered 

until 1576, and not printed until 1663 
•  So credit is normally given to someone else 

-  What are the odds? 
•  In 1654 the Chevalier De Mere asked Blaise Pascal why 

he lost more frequently on one bet, rolling dice, than he 
did on another bet, when it seemed to him the chance 
of success in the two bets should be equal 
•  He also asked how to correctly distribute the stakes 

when a dice game was incomplete 



Roll the Dice 
•  Blaise Pascal exchanged a series of five letters with 

Pierre de Fermat, regarding the dice and points 
problems, in which they outlined the fundamentals of 
probability theory 

•  de Mere’s dice-roll question was about the odds in two 
different bets: 
•  That he would roll at least one six in four rolls of a 

single die 
•  That he would roll at least one pair of sixes in 24 

rolls of a pair of dice 
•  He reasoned (incorrectly) that the odds should be the 

same: 
•  4 * (1/6) = 2/3 
•  24 * (1/36) = 2/3 



Basic Definitions 
•  Random experiment — The process of observing the 

outcome of a chance event 
•  Elementary outcomes — The possible results of a 

random experiment 
•  Sample space — The set of all elementary outcomes 
•  So if the event is the toss of a coin, then 

•  Random experiment = recording the outcome of a 
single toss 

•  Elementary outcomes = Heads or Tails 
•  Sample space = {H,T} 



Sample Space for Dice 
•  Single die has six elementary outcomes: 

•  Two dice have 36 elementary outcomes: 



Probability = Idealized Frequency 
•  Let’s toss a coin 10 times and record a 1 for every 

heads and a 0 for every tails: 

•  Why not 0.5? 
•  Statistical stability (one kind of sampling error) 
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N  = 10!
NH =  6!
NT =  4!

FH = NH/N = 6/10 = 0.6!
FT = NT/N = 4/10 = 0.4!

P(H) ≈ FH = 0.6!
P(T) ≈ FT = 0.4!



Probability = Idealized Frequency 
•  Now toss the coin 100 times, still recording a 1 for 

every heads and a 0 for every tails: 

•  Law of large numbers gives us convergence to the 
actual probability as the number of samples goes to 
infinity 

0 0 0 1 0 1 0 0 1 0!
0 0 0 1 0 1 1 0 0 1!
1 0 0 1 0 0 1 1 0 0!
1 1 0 1 0 1 0 0 0 0!
0 1 0 1 1 1 1 0 1 1!
0 1 1 1 0 0 1 0 1 1!
0 1 1 0 1 1 1 1 1 1!
1 0 1 1 0 1 0 0 0 1!
0 1 1 1 0 0 1 0 1 1!
0 1 0 1 0 1 0 0 0 1!

N  = 100!
NH =  51!
NT =  49!

FH = NH/N = 51/100 = 0.51!
FT = NT/N = 49/100 = 0.49!

P(H) ≈ FH = 0.51!
P(T) ≈ FT = 0.49!



M Out of N 
•  When the random experiments (the samples) are 

independent of each other, then you can simply look at 
the number of possible ways to obtain a particular 
outcome relative to the total number of possible 
outcomes 

•  Tossing a (fair) coin will always produce either Heads 
or Tails, independent of previous experiments, so 

 P(H)  =  1/2  =  0.5 
•  Rolling a particular combination of dice, such as (White 

5 and Black 2) represents one possible outcome out of 
36 possible outcomes, so 

 P(W5 and B2)  =  1/36  =  0.02777… 



Come On, Seven! 
•  However, rolling a seven can be done in any of six ways: 

•  P(Seven)  =  6 / 36  =  1 / 6  =  0.1666… 



Simple Rules of Probability 
•  Define P(oi) = probability of observing outcome oi 
•  0.0  ≤  P(oi)  ≤  1.0 
•  ∑ P(oi)  =  1.0 

•  P(NOT oi)  =  1.0  -  P(oi) 
•  Known as the Subtraction Rule 

i 



Events 
•  Event — a set of elementary outcomes 

•  E.g., rolling a seven 
-  Remember, you could get a seven with any of six different 

elementary outcomes 

•  Define P(x) = probability of observing event x 
•  P(xi) = probability of observing ith possible event 

•  P(x)  =  ∑ P(oj) 

•  oj are the elementary outcomes that produce event x 
•  E.g., six ways of rolling seven yields 6 * (1/36) = 1/6 

•  0.0  ≤  P(xi)  ≤  1.0 
•  ∑ P(xi)  =  1.0 

•  P(NOT xi)  =  1.0  -  P(xi) 
i 

j 



The Addition Rule 
•  Now throw a pair of black & white dice, and ask:   What is 

the probability of throwing at least one one? 
•  Let event a = the white die will show a one 
•  Let event b = the black die will show a one 



The Addition Rule 
•  Probability of throwing at least one one is P(a OR b), 

also written as P(a ∪ b) 
•  Note that the elementary outcome when both dice are 

one (snake eyes) is counted twice if you just sum P(a) 
and P(b), so P(a AND b) must be subtracted, yielding 

•  P(a OR b)  =  P(a)  +  P(b)  -  P(a AND b) 
   =  1/6  +  1/6  -  1/36  =  11/36  =  0.30555… 

•  P(x OR y)  =  P(x)  +  P(y)  -  P(x AND y) 
•  Known as the Addition Rule 

•  If and only if the two events are mutually exclusive, 
which is just another way of saying P(x AND y) = 0.0, 
then we get the special case 
•  P(x OR y)  =  P(x)  +  P(y) 



Joint Probability 
•  The joint probability of two events is just the 

probability of both events occurring (at the same time) 
•  It’s the thing that is zero when the events are 

mutually exclusive 
•  P(x,y)  =  P(x AND y) 

•  Also written as P(x ∩ y) 
•  In our example (a = white one, b = black one), then 

•  P(a,b)  =  P(a AND b)  =  1/36  =  0.02777… 
-  Snake eyes! 



Conditional Probability 
•  Let event c = the dice sum to three 

•  P(c)  =  2/36  =  1/18  =  0.0555… 



Conditional Probability 
•  Suppose we change the rules and throw the dice one at 

a time, first white, then black 
•  This obviously makes no difference before any dice are 

rolled 
•  However, suppose we have now rolled the first die and 

it has come up one (event a), then our possible 
elementary outcomes are reduced to: 

•  P(c|a)  =  1/6  =  0.1666… 



Conditional Probability 
•  P(x|y)  =  P(x AND y) / P(y) 

•  In our example, P(c|a)  =  P(c AND a)  /  P(a) 
         =      (1/36)     /  (1/6) 
         =  1 / 6 

•  P(x AND y)  =  P(x|y) P(y) 
•  Known as the Multiplication Rule 

•  P(x AND y)  ≡  P(y AND x) 
•  P(x|y) P(y)  =  P(y|x) P(x) 



Statistical Independence 
•  If x and y are statistically independent, then 

•  P(x AND y)  =  P(x) P(y) 
-  P(x|y)  =  P(x) 
-  P(y|x)  =  P(y) 

•  From our first dice example, of rolling two ones 
•  P(a)  =  P(b)  =  1/6 
•  P(a AND b)  =  1/36 
•  P(a|b)  =  P(a AND b) / P(b) 
               = (1/36) / (1/6)  =  1/6  =  P(a) 
•  The two events, a and b, are independent 

•  From our sequential dice example, rolling a three 
•  P(c)  =  1/18 
•  P(c|a)  =  1/6  ≠  P(c) 
•  The two events, a and c, are not independent 



Marginal Probability 
•  Marginal probability is the probability of one event, 

ignoring any information about other events 
•  The marginal probability of event x is just P(x) 
•  The marginal probability of event y is just P(y) 

•  If knowledge is specified in terms of conditional 
probabilities or joint probabilities, then marginal 
probabilities may be computed by summing over the 
ignored event(s) 

j j 
P(x)  =  ∑ p(x,yj)  = ∑ p(x|yj) p(yj) 



Enough Probability, 
But What of de Mere? 
•  What is the probability of rolling a six in four rolls of a 

single die (call this event S)? 
•  Let event di = a die shows a six on the ith roll 
•  P(S)  =  P(d1 OR d2 OR d3 OR d4) 
            =  P((d1 OR d2) OR (d3 OR d4)) 
•  P(d1 OR d2)  =  P(d1) + P(d2) - P(d1 AND d2) 
                       =  1/6  +  1/6  -  1/36  =  11/36 
                       =  P(d3 OR d4)) 
•  P(S)  =  11/36  +  11/36  -  (11/36)2 
            =  0.517747 
•  Let event ei = NOT di   (a six does not show) 
•  P(NOT S)  =  P(e1 AND e2 AND e3 AND e4) 
                     =  (5/6)4  =  0.482253   (statistically independent) 
•  P(S)  =  1.0  -  P(NOT S)  =  0.517747 



Wanna Bet? 
•  What is the probability of rolling a pair of sixes in twenty-

four rolls of a pair of dice (call this event T)? 
•  Let event fi = dice show a pair of sixes on the ith roll 
•  P(T)  =  P(f1 OR f2 … OR f24) 
            =  P((f1 OR f2) OR (f3 OR f4) … OR (f23 OR f24)) 
•  … could do it, but entirely too painful … 

•  Let event gi = NOT fi   (a pair of sixes does not show) 
•  P(NOT T)  =  P(g1 AND g2 … AND g24)   
                    =  (35/36)24  =  0.508596 
•  P(T)  =  1.0  -  P(NOT T)  =  0.491404    P(S) =  0.517747 

•  So P(S) > P(T), and de Mere’s observation that he lost 
more often when he bet on double sixes than when he bet 
on single sixes was remarkably astute 



Information Theory (finally) 
•  Claude E. Shannon also called it “communication theory” 
•  The theory was developed and published as “The 

Mathematical Theory of Communication” in the July 
and October 1948 issues of the Bell System Technical 
Journal 

•  Shannon’s concerns were clearly rooted in the 
communication of signals and symbols in a telephony 
system, but his formalization was so rigorous and 
general that it has since found many applications 

•  He was aware of similarities and concerned about 
differences with thermodynamic entropy, but was 
encouraged to adopt the term by Von Neumann, who 
said, “Don’t worry.  No one knows what entropy is, so in 
a debate you will always have the advantage.” 



Entropy 
•  Physicist Edwin T. Jaynes identified a direct connection 

between Shannon entropy and physical entropy in 1957 
•  Ludwig Boltzmann’s grave is embossed with his equation: 

 S = k log W 
 Entropy = Boltzmann’s-constant 
    * log( function of # of possible micro-states ) 

•  Shannon’s measure of information (or uncertainty or 
entropy) can be written: 

 I = K log Ω 
 Entropy = constant (usually dropped) 
    * log( function of # of possible micro-states ) 



Energy -> Information -> Life 
•  John Avery (Information Theory and Evolution) relates 

physical entropy to informational entropy as 
 1 electron volt / kelvin  =  16,743 bits 

•  So converting one electron-volt of energy into heat, at 
room temperature will produce an entropy change of 

 1 electron volt / 298.15 kelvin  =  56.157 bits 
•  Thus energy, such as that which washes over the Earth 

from the Sun, can be seen as providing a constant flow 
of not just “free energy”, but free information 

•  Living systems take advantage of, and encode this 
information, temporarily and locally reducing the 
conversion of energy into entropy 
•  Brains encode rapidly changing information in neural 

structures 
•  Genes encode slowly changing information in DNA 



History, As Always 
•  Samuel F.B. Morse worried about letter frequencies when 

designing (both versions of) the Morse code (1838) 
•  Made the most common letters use the shortest codes 
•  Obtained his estimate of letter frequency by counting 

the pieces of type in a printer’s type box 
•  Observed transmission problems with buried cables 

•  William Thompson, aka Lord Kelvin, Henri Poincaré, Oliver 
Heaviside, Michael Pupin, and G.A. Campbell all helped 
formalize the mathematics of signal transmission, based 
on the methods of Joseph Fourier (mid to late 1800’s) 

•  Harry Nyquist published the Nyquist Theorem in 1928 
•  R.V.L. Hartley published “Transmission of Information” in 

1928, containing a definition of information that is the 
same as Shannon’s for equiprobable, independent symbols 



History 
•  During WWII, A.N. Kolmogoroff, in Russia, and 

Norbert Weiner, in the U.S., devised formal analyses 
of the problem of extracting signals from noise 
(aircraft trajectories from noisy radar data) 

•  In 1946 Dennis Gabor published “Theory of 
Communication”, which addressed related themes, but 
ignored noise 

•  In 1948 Norbert Wiener published Cybernetics, dealing 
with communication and control 

•  In 1948 Shannon published his work 
•  In 1949 W.G. Tuller published “Theoretical Limits on 

the Rate of Transmission of Information” that 
parallels Shannon’s work on channel capacity 



Stochastic Signal Sources 
•  Suppose we have a set of 5 symbols—the English 

letters A, B, C, D, and E 
•  If symbols from this set are chosen with equal 

probability (0.2), you would get something like: 
 B D C B C E C C C A D C B D D A A E C E E 
A A B B D A E E C A C E E B A E E C B C E 
A D!

•  This source may be represented as follows!



Stochastic Signal Sources 
•  If the same symbols (A, B, C, D, E) are chosen with 

uneven probabilities 0.4, 0.1, 0.2, 0.2, 0.1, respectively, 
one obtains: 

 A A A C D C B D C E A A D A D A C E D A E 
A D C A B E D A D D C E C A A A A A D!

•  This source may be represented as follows 



Stochastic Signal Sources 
•  More complicated models are possible if we base the 

probability of the current symbol on the preceding 
symbol, invoking conditional and joint probabilities 

•  E.g., if we confine ourselves to three symbols, A, B, and 
C, with the following probability tables 

 one might obtain 
 A B B A B A B A B A B A B A B B B A B B B 
B B A B A B A B A B A B B B A C A C A B B 
A B B B B A B B A B A C B B B A B A 

Transition 
(Conditional) 
Probabilities 
 
    P(j|i) 

Digram 
(Bigram, Joint) 
Probabilities 
 
   P(i AND j) 



Stochastic Signal Sources 
•  This source may be represented as follows 

•  Simple bigrams (or digrams) may, of course, be 
replaced with trigrams or arbitrary depth n-grams, if 
we choose to make the next symbol dependent on more 
and more history 



Stochastic Signal Sources 
•  Symbols can also be words, not just letters 
•  Suppose that, based on our five letters, A, B, C, D, and 

E, we have a vocabulary of 16 “words” with associated 
probabilities: 
!.10 A    .16 BEBE .11 CABED .04 DEB!
!.04 ADEB .04 BED  .05 CEED  .15 DEED!
!.05 ADEE .02 BEED .08 DAB   .01 EAB!
!.01 BADD .05 CA   .04 DAD   .05 EE 

•  If successive words are chosen independently and 
separated by a space, one might obtain: 
!DAB EE A BEBE DEED DEB ADEE ADEE EE DEB 
BEBE BEBE BEBE ADEE BED DEED DEED CEED 
ADEE A DEED DEED BEBE CABED BEBE BED DAB 
DEED ADEB 

•  And again one could introduce transition probabilities 



Stochastic Signal Sources 
•  This source may be represented as follows 



Approximations of English (Letters) 
•  Assume we have a set of 27 symbols—the English 

alphabet plus a space 
•  A zero-order model of the English language might then 

be an equiprobable, independent sequence of these 
symbols: 

 XFOML RXKHRJFFJUJ ZLPWCFWKCYJ 
FFJEYVKCQSGHYD QPAAMKBZAACIBZLHJQD!

•  A first-order approximation, with independent symbols, 
but using letter frequencies of English text might 
yield: 

 OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH 
EEI ALHENHTTPA OOBTTVA NAH BRL 



Approximations of English (Letters) 
•  A second-order approximation using bigram 

probabilities from English text might yield: 
!ON IE ANTSOUTINYS ARE T INCTORE ST BE S 
DEAMY ACHIN D ILONASIVE TUCOOWE AT 
TEASONARE FUSO TIZIN ANDY TOBE SEACE 
CTISBE 

•  A third-order approximation using trigram probabilities 
from English text might yield: 

 IN NO IST LAT WHEY CRATICT FROURE BIRS 
GROCID PONDENOME OF DEMONSTURES OF THE 
REPTAGIN IS REGOACTIONA OF CRE 



Approximations of English (Words) 
•  A first-order word approximation, choosing words 

independently, but with their appropriate frequencies: 
 REPRESENTING AND SPEEDILY IS AN GOOD APT 
OR COME CAN DIFFERENT NATURAL HERE HE THE 
A IN CAME THE TOOF TO EXPERT GRAY COME TO 
FURNISHES THE LINE MESSAGE HAD BE THESE 

•  A second-order word approximation, using bigram word 
transition probabilities (but no other grammatical 
structure): 

 THE HEAD AND IN FRONTAL ATTACK ON AN 
ENGLISH WRITER THAT THE CHARACTER OF THIS 
POINT IS THEREFORE ANOTHER METHOD FOR THE 
LETTERS THAT THE TIME OF WHO EVER TOLD 
THE PROBLEM FOR AN UNEXPECTED 

•  Note that there is reasonably good structure out to 
about twice the range that is used in construction 



Information in Markov Processes 
•  The language models just discussed and many other 

symbol sources can be described as Markov processes 
(stochastic processes in which future states depend 
solely on the current state, and not on how the current 
state was arrived at) 

•  Can we define a quantity that measures the information 
produced by, or the information rate of, such a 
process? 

•  Let’s say that the information produced by a given 
symbol is exactly the amount by which we reduce our 
uncertainty about that symbol when we observe it 

•  We therefore now seek a measure of uncertainty 



Uncertainty 
•  Suppose we have a set of possible events whose 

probabilities of occurrence are p1, p2, …, pn 
•  Say these probabilities are known, but that is all we 

know concerning which event will occur next 
•  What properties would a measure of our uncertainty, 

H(p1, p2, …, pn), about the next symbol require: 
1)  H should be continuous in the pi 
2)  If all the pi are equal (pi = 1/n), then H should be a 

monotonic increasing function of n 
-  With equally likely events, there is more choice, or 

uncertainty, when there are more possible events 
3)  If a choice is broken down into two successive 

choices, the original H should be the weighted sum 
of the individual values of H 



Uncertainty 

•  On the left, we have three possibilities: 
 p1 = 1/2, p2 = 1/3, p3 = 1/6 

•  On the right, we first choose between two possibilities: 
 p1 = 1/2, p2 = 1/2 

and then on one path choose between two more: 
 p3 = 2/3, p4 = 1/3 

•  Since the final probabilities are the same, we require: 
 H(1/2, 1/3, 1/6)  =  H(1/2, 1/2)  +  1/2 H(2/3, 1/3) 



Entropy 
•  In a proof that explicitly depends on this 

decomposibility and on monotonicity, Shannon 
establishes 
•  Theorem 2:  The only H satisfying the three above 

assumptions is of the form: 

 where K is a positive constant 
•  Observing the similarity in form to entropy as defined 

in statistical mechanics, Shannon dubbed H the entropy 
of the set of probabilities p1, p2, …, pn 

•  Generally, the constant K is dropped; Shannon explains 
it merely amounts to a choice of unit of measure 

H  =  - K ∑ pi log pi 
n 

i=1 



Behavior of the Entropy Function 
•  In the simple case of two possibilities with probability 

p and q = 1 - p, entropy takes the form 
 H  =  - (p log p  +  q log q) 

and is plotted here as a function of p: 



Behavior of the Entropy Function 
•  In general, H = 0 if and only if all the pi are zero, 

except one which has a value of one 
•  For a given n, H is a maximum (and equal to log n) when 

all pi are equal (1/n) 
•  Intuitively, this is the most uncertain situation 

•  Any change toward equalization of the probabilities p1, 
p2, …, pn increases H 
•  If pi ≠ pj, adjusting pi and pj so they are more nearly 

equal increases H 
•  Any “averaging” operation on the pi increases H 



Joint Entropy 
•  For two events, x and y, with m possible states for x 

and n possible states for y, the entropy of the joint 
event may be written in terms of the joint probabilities 

 while 
 
 
•  It is “easily” shown that 

 H(x,y)  ≤  H(x)  +  H(y) 
•  Uncertainty of a joint event is less than or equal to 

the sum of the individual uncertainties  
•  Only equal if the events are independent 

-  p(x,y) = p(x) p(y) 

H(x,y)  =  - ∑ p(xi,yj) log p(xi,yj) 
i,j 

H(x)  =  - ∑ p(xi,yj) log ∑ p(xi,yj) 
i,j j 

H(y)  =  - ∑ p(xi,yj) log ∑ p(xi,yj) 
i,j i 



Conditional Entropy 
•  Suppose there are two chance events, x and y, not 

necessarily independent.  For any particular value xi 
that x may take, there is a conditional probability that 
y will have the value yj, which may be written 

•  Define the conditional entropy of y given x, H(y|x), as 
the average of the entropy of y given each value of x, 
weighted according to the probability of getting that 
particular x 

•  This quantity measures, on the average, how 
uncertain we are about y when we know x 

j 
p(yj|xi)  =  p(xi,yj)  /  ∑ p(xi,yj) 

H(y|x) = - ∑ p(xi,yj) log p(yj|xi) 
i,j 

H(y|x) = - ∑ p(xi) p(yj|xi) log p(yj|xi) 
i,j 

=  p(xi,yj) / p(xi) 



Joint, Conditional, & Marginal 
Entropy 
•  Substituting for p(yj|xi), simplifying, and rearranging 

yields 
 H(x,y)  =  H(x)  +  H(y|x) 

•  The uncertainty, or entropy, of the joint event x, y 
is the sum of the uncertainty of x plus the 
uncertainty of y when x is known 

•  Since H(x,y)  ≤  H(x) + H(y), and given the above, then 
 H(y)  ≥  H(y|x) 

•  The uncertainty of y is never increased by 
knowledge of x 

-  It will be decreased unless x and y are independent, in 
which case it will remain unchanged 



Maximum and Normalized Entropy 
•  Maximum entropy, when all probabilities are equal is 

 HMax  =  log n 
•  Normalized entropy is the ratio of entropy to maximum 

entropy 
 Ho(x)  =  H(x)  /  HMax 

•  Since entropy varies with the number of states, n, 
normalized entropy can be a better way of comparing 
across systems 

•  Shannon called this relative entropy 
•  (Some cardiologists and physiologists call entropy 

divided by total signal power normalized entropy) 



Mutual Information 
•  Define Mutual Information (aka Shannon Information 

Rate) as 

•  When x and y are independent p(xi,yj) = p(xi)p(yj), so I
(x,y) is zero 

•  When x and y are the same, the mutual information of 
x,y is the same as the information conveyed by x (or y) 
alone, which is just H(x) 

•  Mutual information can also be expressed as 
I(x,y)  =  H(x)  -  H(x|y)  =  H(y)  -  H(y|x) 

•  Mutual information is nonnegative 
•  Mutual information is symmetric; i.e., I(x,y) = I(y,x) 

I(x,y) = ∑ p(xi,yj) log [ p(xi,yj) / p(xi)p(yj) ] 
i,j 



Probability and Uncertainty 
•  Marginal 

p(x) 
•  Joint 

p(x,y) 
•  Conditional 

p(y|x) 
•  Mutual 

H(x)  =  - ∑ p(xi) log p(xi) 
i 

H(x,y)  =  - ∑ p(xi,yj) log p(xi,yj) 
i,j 

H(y|x)  =  - ∑ p(xi,yj) log p(yj|xi) 
i,j 

I(x,y) =  ∑ p(xi,yj) log [ p(xi,yj) / p(xi)p(yj) ] 
i,j 



Credits 
•  Die photo on slide 3 from budgetstockphoto.com 
•  Penny photos on slide 4 from usmint.gov 
•  Some organization and examples of basic probability theory taken 

from Larry Gonick’s excellent The Cartoon Guide to Statistics 
http://www.amazon.com/exec/obidos/ASIN/0062731025/ 

•  Some historical notes are from John R. Pierce’s An Introduction to 
Information Theory 
http://www.amazon.com/exec/obidos/ASIN/0486240614/ 

•  Physical entropy relation to Shannon entropy and energy-to-
information material derived from John Avery’s Information 
Theory and Evolution   
http://www.amazon.com/exec/obidos/ASIN/9812384006/ 

•  Information theory examples from Claude E. Shannon’s The 
Mathematical Theory of Communication 
http://www.amazon.com/exec/obidos/ASIN/0252725484/ 
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