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Abstract. The repetitive stochastic patterns of eye dominance and orientation preference found
in the mammalian visual cortex have attracted much attention from theoretical neurobiologists
during the last two decades. Reasons for this include the visually intriguing nature of the patterns
and the fact that many aspects of their development seem likely to be dependent upon both
spontaneous and visually driven patterns of neural activity. Understanding these processes holds
out the promise that general theories of learning and memory may be derived from those found to
be applicable to the visual cortex. It has turned out, in fact, that remarkably simple models, based
on Hebbian synaptic plasticity, intracortical interactions and competitive interactions between
cells and growing axons, have been able to explain much of the phenomenology.

This article reviews the models of topographic organization in the visual cortex in a roughly
historical sequence, beginning with von der Malsburg’s paper 1973 paper inKybernetikon self-
organization of orientation selectivity. The principles on which each of the models is based are
explained, and the plausibility of each model and the extent to which it is able to account for
the relevant experimental data are evaluated. Attention is drawn to the underlying similarities
and differences between the models and suggestions are made for future directions in research.
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‘The sciences do not try to explain, they hardly even try to interpret, they mainly make
models. By a model is meant a mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The justification of such a mathematical
construct is solely and precisely that it is expected to work.’John von Neumann

1. Introduction

The mammalian visual cortex is a highly ordered structure which, over the last two decades,
has attracted much attention from theoretical neurobiologists. It is not hard to find reasons
for this interest. The visual cortex is one of the most thoroughly studied brain regions and
many aspects of its development have been shown to be dependent upon neural activity
and visual experience. Understanding these processes holds out the promise that general
theories of learning, memory and knowledge representation will be discovered that are
applicable to the whole cortex. It has turned out, in fact, that remarkably simple models,
based on competitive interactions and Hebbian synaptic plasticity, have been able to explain
many of the intriguing features of visual cortex organization, in particular the presence of
a retinotopic map and the repetitive, stochastic patterns of eye dominance and orientation
preference which are overlaid on it.

In this article I shall review, in a roughly historical sequence, a number of these models.
I shall attempt to explain the principles on which each model is based, to evaluate its
plausibility and relations with other models, and the extent to which it is able to account
for the relevant experimental data. For reasons of space, the review will be restricted to
models which attempt to explain the formation of spatial topography in the cortex: models
which only address the question of how individual receptive fields develop will be ignored.

Other reviews of this topic have recently appeared. Erwinet al (1995) evaluated
some recent models of visual cortex topography in terms of the principles on which they
were based and the similarity between their output and the experimental optical recording
data; they paid less attention to the biological assumptions behind the different models
and to agreement with other developmental data. Goodhill (1992) presented and analysed
mathematically a number of different models but, unfortunately, this review is not widely
available. Miller (see Miller and Stryker 1990, Miller 1990a, b, 1992a, 1995) has also
provided detailed reviews and analyses of the role of correlation-based learning rules in the
formation of receptive fields and spatial patterns in the cortex.

2. Experimental background

The aspects of visual cortical organization and development which have been of interest to
theoreticians include:

(i) retinotopy, i.e. the development of a continuous topographic mapping from the retina
to the cortex;

(ii) the development of eye dominance stripes;
(iii) the development of orientation selectivity and orientation columns.

The recent discovery of a variety of structural relationships between these three parameters
has also invited explanation.

2.1. Global retinotopy

The manner in which the retina projects onto the surface of the macaque monkey visual
cortex is illustrated by the result (Tootellet al 1988b) shown in figure 1. In this experiment,
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an anaesthetized monkey viewed a visual stimulus (shown on the left-hand side of the
figure) with one eye, after intravenous injection of radioactively labelled 2-deoxyglucose.
The resulting pattern of radioactivity in its visual cortex is shown on the right-hand side.
It shows that lines of constant eccentricity,r (marked 1, 2 and 3 in figure 1), and lines
of constant polar angle,θ (marked I, H and S in figure 1), in visual space, map, to a first
approximation, onto straight lines which intersect approximately at right angles. This is
consistent with the suggestion (Schwartz 1980) that the mapping can be described by a
complex logarithmic functionw = a loge(z + b), wherew = (x + iy) is the position on
the cortex in millimetres, andz = reiθ , wherer is the visual field eccentricity in degrees
of visual angle relative to the fovea,θ is the meridional angle in radians anda andb are
constants which can be determined experimentally. This formula implies that angles are
preserved, i.e. lines intersecting at right angles on the retina (as in figure 1) should project
to lines that intersect at right angles on the cortex; in addition, it implies that the retinal
magnification factor is locally isotropic, i.e. independent of whether it is measured along a
horizontal or vertical direction in visual space. This magnification factor, in millimetres of
cortex per degree of visual angle, is given bya(x + b)/{(x + b)2 + y2}, which at the fovea
is equal toa/b (i.e. whenx = y = 0).

Figure 1. Deoxyglucose autoradiograph showing the distribution of activity (darkened regions)
evoked in macaque monkey striate cortex by the visual stimulus shown on the left. The cortex
was flattened before sectioning. The stimulus was viewed monocularly and ocular dominance
columns are visible as periodic interruptions in the pattern of activity. Corresponding regions
in the visual field and the visual cortex are indicated by letters and numbers: S = superior
visual field; F = fovea; I = inferior visual field; H = horizontal meridian. The semicircles in
the stimulus (1, 2, 3) are positioned at 1◦, 2.3◦ and 5.4◦ eccentric to the fovea respectively.
The black and white checks in the stimulus were contrast-reversed at 3 Hz during the period of
stimulation. (Reproduced, with modifications, from Tootellet al (1988b).)

Experimental data obtained by Dowet al (1985) supported Schwartz’s model, and led
to an estimate ofa = 7.7 andb = 0.33. This formula gives a good approximation for the
variation in magnification factor with retinal position in many regions of cortex, although
other authors (Van Essenet al 1984, LeVayet al 1985, Tootellet al 1988b) have found
that the magnification factor is significantly anisotropic in many regions of the cortex and
this is inconsistent with a simple complex logarithmic mapping. The anisotropy, however,
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is usually less than a factor of two, being more marked along the representation of the
vertical meridian than the horizontal, and shows significant inter-animal variability. With
these qualifications, Van Essenet al (1984) suggest that magnification factors outside of the
fovea can be described by the formulaeMp = 12.0 E−1.11 andMe = 9.0 E−1.15 whereE

is visual field eccentricity in degrees radial to the fovea, andMp and Me are the cortical
magnifications in mm per degree along iso-polar and iso-eccentricity lines in visual space,
respectively.

The mechanisms responsible for the formation of the retinotopic map in mammalian
visual cortex have received relatively little attention and are not well understood. In contrast,
there is a large body of experimental data on the formation of topographic projections
between the retina and the optic tectum of lower vertebrates, such as frogs and goldfish
(Udin and Fawcett 1988). Work on this system, among others, has shown that the formation
of connections between physically separate neural structures generally involves the following
sequence (Easteret al 1994):

(i) axonal outgrowth in a fibre bundle, towards the target structure;
(ii) initial innervation of the target structure by axons which often branch profusely within

it;
(iii) selective removal of parts of the axonal tree; and possibly
(iv) selective strengthening or weakening of connections within axonal arbors.

There are a number of ways in which topographic order may be maintained during these
stages.

• Fibres within developing tracts tend to maintain order as the tract grows towards its
target structure, so that a principle of ‘neighbours in, neighbours out’ applies (Horder
and Martin 1978).

• A relationship exists between position on the retina and the time at which fibres leave
the retina, enter the optic nerve and arrive at the tectum; this can be used to establish a
topography if space is allocated in the tectum on a ‘first come, first served’ basis.

• Chemical markers label nerve cells according to their position of origin in the retina;
another set of complementary labels exists in the tectum and determines a correct match
between the two structures (Sperry 1944).

• Gradients of chemo-repellant and/or chemo-attractive molecules are present in the
tectum which act selectively on cells from different regions of the retina causing their
axons to avoid terminating in certain regions of the tectum (Gierer 1987, Sanes 1993,
Baier and Bonhoeffer 1994).

• The neural impulse activity of nearby retinal ganglion cells tends to be more closely
correlated than that in pairs further apart (Arnett 1978, Arnett and Spraker 1981,
Mastronarde 1983); as will be explained in more detail later (section 4.1), this can be
used to establish a topography if Hebbian rules apply to the formation of connections
(Willshaw and von der Malsburg 1976).

From the point of view of the modeller, an important conclusion from the research which
has been performed to disentangle the application of these hypotheses to the retino-tectal
projection (reviewed by Udin and Fawcett (1988)) is that no one mechanism is sufficient
to explain the establishment of order and few of the suggested mechanisms can be ruled
out. For example, a roughly ordered projection can form in the complete absence of all
electrical activity (Harris 1980). Thus, topographic ordering within the afferent pathway,
maintained by selective adhesion and/or time of outgrowth cues, spatial gradients of chemo-
attractive and chemo-repellant molecules within the target structure and activity-dependent
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addition and removal of neural connections may all be important in the eventual formation
of topographic projections. However, these different mechanisms seem likely to operate
at different stages of development: initially, topography is probably established by time
of outgrowth, selective adhesion, axonal guidance and chemical cues, while in the final
stages, a neural-activity-dependent mechanism may lead to a further increase in topographic
precision (see e.g. Schmidt and Edwards (1983), Cook (1987), Cook and Becker (1990),
Constantine-Patonet al (1990)).

These same mechanisms may operate in the formation of the visual field map in the
visual cortex (Molńar and Blakemore 1995). However, a curious difference between the
cortex and the tectum is that incoming geniculate axons make their first synaptic contacts in
the weeks before birth, not with cortical neurons but within a region known as the subplate
(Rakic 1977, Shatz and Luskin 1986, Allendoerfer and Shatz 1994). This lies immediately
beneath the embryonic visual cortex. During this period, the geniculate axons branch widely
(Ghosh and Shatz 1992) and make functional synaptic contacts with subplate neurons (Chun
and Shatz 1988, Friaufet al 1990). At the same time, the layers of the visual cortex are
formed by cell division and migration (Rakic 1978, Shatzet al 1988, McConnell 1988). It
is possible that a significant amount of topographic refinement occurs at this stage. A few
days before birth, the geniculate axons leave the subplate and invade the cortex where they
establish connections within layer IV. The subplate neurons die during this period and have
mostly gone by the time segregation into ocular dominance columns is complete.

As yet, there is little direct evidence that visually driven, or spontaneous, neural activity
plays a role in either the initial formation, or refinement, of retinal topography in the visual
cortex. A reasonably accurate topography is presumably present at birth in the macaque
monkey (Wiesel and Hubel 1974) and by the time of eye opening in the kitten (Hubel
and Wiesel 1963) and this suggests that visually evoked neural activity does not play a
major role. However, visual stimulation might help to refine topography, as well as other
receptive field properties, postnatally. This seems especially likely to be the case in the
visual cortex, given that the maps of the left and right retinas must match almost exactly
in order for the binocular correspondences necessary for stereopsis to be established. The
most feasible cue for matching with the required degree of precision is the detection of
inter-ocular correlations in visually evoked retinal activity. This is also suggested by the
observation that receptive field positions are malleable in adult animals (Chinoet al 1992,
Gilbert and Wiesel 1992).

2.2. Receptive field scatter and the cortical point image

Although the topography of the projection from the retina to the visual cortex is remarkably
precise, on a cellular level it is not perfectly accurate. This is shown by the fact that neurons
in the same vertical column† of cells have receptive fields scattered in slightly different
retinal locations (Hubel and Wiesel 1974b, Albus 1975a). The size of the region over which
receptive field centres are scattered is comparable with the size of the individual receptive
fields within a column. This relationship holds for a range of visual field eccentricities and
receptive field sizes. In the part of visual cortex which represents the fovea, receptive field
sizes and the corresponding scatter are both small, while with increasing distance from the
fovea both the degree of scatter and receptive field size increase by similar amounts. This

† A column can be defined as a set of cells which occupy a region whose boundaries are perpendicular to the
surface of the cortex and which share some functional property. The size and shape of the region are variable,
depending upon the property in question. The smallest cortical region which might usefully be considered to be a
column of some kind is about 30µm in diameter and contains about 100–200 neurons.
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finding has the corollary that a single point in visual space will lie in the centre (more
accurately within some defined small region in the centre) of the receptive fields of cells
in a number of different, neighbouring, cortical columns. This distribution can be referred
to as the cortical point image†. Its size,σC, can be estimated, assuming a locally uniform
magnification factor,M mm per degree, from the relationshipσC = MσR, whereσR is the
receptive field scatter, or aggregate receptive field size, measured at a single location in the
cortex. Hubel and Wiesel (1974b) found thatσR andM are inversely related and concluded
that σC remained constant over the surface of the visual cortex. Other authors (Dowet al
1981, Van Essenet al 1984) have found that receptive field size does not decrease in the
fovea as much as would be expected from the change in magnification factor. Consequently,
the cortical point image is probably larger in the fovea than elsewhere.

Accurate measurements of point image size do not exist: in the monkey, estimates vary
from about 2–3 mm (Hubel and Wiesel 1974b); 1–2 mm (Hubel and Wiesel 1977); 10 mm
at the fovea and decreasing to 1 mm at 50◦ eccentricity (Dowet al 1981) and 0.5–0.75 mm
with a minimum at 5◦ (Van Essenet al 1984). Point image size is different in different
layers of the cortex (Tootellet al 1988b). For example, in layer IVc of primate visual
cortex, receptive fields are concentric and very small, and there seems to be an extremely
orderly mapping of receptive field position (Hubelet al 1974, Blasdel and Fitzpatrick
1984) which is described in more detail in subsection 2.9.1. In area 17 of the cat, Albus
(1975a) estimated point image diameter to be about 2.7 mm; in area 18 of the same species,
Cynaderet al (1987) found that scatter in receptive field centre positions (measured as twice
the standard deviation) was about 0.6 mm along the medio-lateral axis and 1.2 mm along
the antero-posterior axis. This anisotropy was positively correlated with the magnification
factor anisotropy found in the same cortical area. It is worth emphasizing that there is
no necessary connection between point image shape and magnification factor anisotropy.
However, a positive correlation between the two will have the effect of making the retinal
point image (the locus of retinal receptive fields of a single point on the cortical surface)
circular rather than elliptical.

2.3. Ocular dominance columns in adult animals

The physiological studies of Hubel and Wiesel (1963, 1968, 1977) showed that many cells
in the visual cortex had binocular receptive fields and that the fields had the same position
in visual space, whether plotted in the ipsilateral or contralateral eye. However, cells
varied in their relative responsiveness to each eye, with some showing a greater response
to stimulation through the contralateral eye, some preferring the ipsilateral eye and others
being equally responsive to both eyes. In addition, some cells, particularly those located
in layer IV of the cortex, where the inputs from the LGN terminate, were monocular and
would respond only to one eye. These variations in ocular dominance were shown to obey
the principle of columnar organization, i.e. cells in the same column tended to share a
preference for stimuli presented to one eye or the other.

An anatomical explanation for the physiological variations in ocular dominance was
first discovered by Hubel and Wiesel (1972) and, since then, a wide variety of anatomical
techniques has been used to reveal the spatial pattern of ocular dominance columns (figure 2).
These investigations have shown that in many, though not all, mammalian species, inputs

† The definition can be broadened to include all parts of the receptive field and not just the centre. The cortical
point image would thus include cells, any part of whose receptive field overlapped the visual field location in
question. The size of the image would be correspondingly larger. This definition is perhaps less satisfactory than
the first, because it requires a definition of what constitutes the edge of a receptive field.
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from the left and the right eyes are segregated within layer IV of the cortex into non-
overlapping regions with a characteristic periodicity and morphology. In the macaque
monkey (figure 2(a)) the regions are branching stripes with a fairly uniform width of around
400 µm and an overall periodicity of about 800µm (Hubelet al 1977, LeVayet al 1985,
Blasdel et al 1995). The stripes show a tendency to narrow at branch points and run
orthogonally into the boundaries of area 17. Their resemblance to patterns found elsewhere
in nature, e.g. on zebras, many species of frog and fish, and magnetic thin films, is striking,
and has often been commented on (see e.g. Hubelet al (1977), Swindale (1980), Tanaka
(1990a)) and has provided a stimulus for theoretical explanation in general terms.

In areas 17 and 18 of the cat (figure 2(b)) the pattern is less regular than in the macaque,
although it is still periodic. There is also an asymmetry between the two eyes: about 40% of
the surface area of cortex is devoted to inputs from the ipsilateral eye, which form a pattern
of irregularly shaped blobs and elongated patches, while the remaining 60% is devoted to
the contralateral eye. The overall periodicity in area 17 is between 0.8 and 1.2 mm (Löwel
and Singer 1987, Swindale 1988, Diaoet al 1990). In area 18 the periodicity is between
1.8 mm and 2.2 mm (L̈owel and Singer 1987, Cynaderet al 1987, Swindale 1988, Diaoet
al 1990). Ocular dominance columns are also present in chimpanzees (Tigges and Tigges
1979) and humans (Hitchcock and Hickey 1980, Horton and Hedley-White 1984, Horton
et al 1990) where they have a periodicity of about 1.4 mm.

The phenomenology of ocular dominance column behaviour is rich and only some
aspects of it will be covered here. The gamut of patterns found in adult animals ranges at
one extreme from mostly parallel bands with relatively few branches in talapoin monkeys
(Florence and Kaas 1992); the highly branched patterns found in macaque and New World
Ateles (Florenceet al 1986) andCebusmonkeys (Hess and Edwards 1987, Rosaet al
1988); less regular spots and patches in cats (Shatzet al 1977, Andersonet al 1988) and
ferrets (Lawet al 1988, Redieset al 1990), to nearly complete overlap in New World
monkeys such asAotes (Kaas et al 1976, Roweet al 1978), andSaimiri (Tigges et al
1977, Hendricksonet al 1978). Ocular dominance columns are present transiently in young
marmosets (Callithrix jacchus, a small New World primate) but disappear before the animal
reaches maturity (Spatz 1979, 1989). Monocular deprivation causes the transient patches
to remain permanent (DeBruyn and Casagrande 1981, Sengpielet al 1996). Similarly,
monocular deprivation, or alternating monocular deprivation, can cause eye dominance
stripes to form in the owl visual cortex (Pettigrew 1982, Pettigrew and Gynther 1989)
although they are not normally present in this species. In tree shrews, a vertical rather
than a lateral pattern of segregation occurs, with ipsilateral eye inputs occupying the top
and bottom of layer IV and contralateral eye inputs occupying the middle (Hubel 1975,
Casagrande and Harting 1975, Conleyet al 1984). As figure 2 illustrates, there can also be
morphological variability within the cortex: in the macaque, the stripes show more parallel
order peripheral to the blind spot; ipsilateral eye stripes break up into blobs close to the
monocular segment, while overall periodicity in the extreme periphery is about half of that
in the fovea (LeVayet al 1985). Needless to say, accommodating morphological variability
within and between species is a challenge for any model.

From a functional point of view, ocular dominance columns remain an enigma. The
possibility that they may not have a function at all should perhaps be taken seriously.
Modelling results (described in more detail below, see e.g. von der Malsburg and
Willshaw (1976), Goodhill (1993)) show that mechanisms whose main purpose is to ensure
corresponding topographic mappings from two retinas onto a single sheet of cells, usually
produce ocular dominance stripes. The fact that stripes can be made to develop in situations
where they would not normally be present (e.g. in the marmoset, the owl, and the three-eyed
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Figure 2. Ocular dominance columns in macaque monkey and cat. The upper panel shows the
pattern over nearly the complete visual hemifield in a macaque monkey. The outer boundaries
of the pattern correspond to the vertical midline of the visual field; F indicates the fovea;
OD the optic disc, and MS the monocular segment. The pattern is a drawing made from
a montage of sections stained for cytochrome oxidase in a monkey which had lost one eye
over a year prior to sacrifice (from Florence and Kaas (1992)). The lower panel shows the
distribution of radioactivity (bright regions) in a photomontage of sections of flattened cat striate
cortex following injection of radioactive label into one eye. A sketch of the visual field and
corresponding points in the visual cortex is shown below the figure. V = vertical midline; H =
horizontal meridian; OD = optic disc; (from Andersonet al (1988), with modifications).

frog) also suggests that they might be an incidental outcome of development (Constantine-
Paton 1983). And while an obvious candidate function for stripes is stereopsis, it has recently
been reported that squirrel monkeys (Saimiri), which lack ocular dominance stripes, have
a stereoacuity (as revealed by evoked potential methods) comparable with that of human
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observers (Livingstoneet al 1995). If this turns out to be true, it might be worth asking the
opposite question: why do ocular dominance stripes not interfere with normal vision?

2.4. The development of ocular dominance columns

Ocular dominance columns emerge from an initially overlapping, unsegregated distribution
of left- and right-eye inputs within layer IV. It was originally thought that, in macaque
monkeys, this process begins shortly before birth and is not complete until four to six
weeks of age (Rakic 1976, 1977, Hubelet al 1977, LeVayet al 1980). However, recent
experiments by Horton and Hocking (1996), in which infant monkeys were delivered by
Caesarean section one week before the normal time of birth and studied one week later, at
around the time of normal birth, have suggested that a nearly adult-like pattern of stripes
may normally be present at the time of birth. Because the infant monkeys studied by
Horton and Hocking were kept in total darkness at all stages following delivery, the results
also show that visual experience cannot have played a role in segregation. This confirms
the earlier observation by LeVayet al (1980) of normal ocular dominance columns in a
seven-week old dark-reared monkey.

In the cat, segregation begins at around three to four weeks postnatally, and ends at
around six to eight weeks (LeVayet al 1978). The process is usually characterized as one
in which spatially selective removal of parts of geniculate axonal arbors is dominant, but
because overall synapse density in the visual cortex increases several-fold during the period
of segregation (Cragg 1975, Rakicet al 1986), selective addition of connections might be
more important than selective removal.

A variety of experimental manipulations affects the development of ocular dominance
columns. Much of the data comes from cats, although there are some primate data. Almost
all of the observations demonstrate that visually driven, as well as spontaneously occurring,
patterns of neural activity determine the final outcome of segregation.

2.4.1. Monocular deprivation. If vision through one eye is prevented by suturing the
eyelids shut for a period of a few days during, or shortly after, the period when segregation
occurs, the stripes or patches formed by the deprived eye’s inputs shrink, while those from
the normal eye expand. This has been shown for both monkeys (Hubelet al 1977) and
kittens (Shatz and Stryker 1978). These observations are among the strongest pieces of
evidence that segregation is a competitive process in which the final outcome is determined,
at least in part, by visually evoked neural activity.

2.4.2. Dark rearing. A normal pattern of ocular dominance stripes was found in a macaque
monkey which had been reared in darkness after birth (LeVayet al 1980). Given this
evidence, and the fact that Horton and Hocking (1996) carefully avoided exposing the infant
monkeys in their study to visible light, it can be concluded that visually driven activity is
not required for ocular dominance segregation to take place in the macaque. This does
not seem be true in cat area 17, where it has been found that depriving kittens of visual
stimulation by rearing in darkness, or by binocular lid suture, leads to reduced or abnormal
segregation of ocular dominance columns (Swindale 1981b, 1988, Kalil 1982, Moweret
al 1985). A different result was obtained by Stryker and Harris (1986) who found that
fluctuations in input density in dark-reared cats could be as large as those seen in normal
cats. A possible explanation for the disagreement may come from the results of Fourier
power spectral analysis (Swindale 1988) of the distribution of inputs revealed by trans-
neuronal autoradiography in area 17. This showed an approximately 1/f spectrum, with
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no evidence of the peak at a spatial wavelength of about 1 mm which is seen in normally
reared animals. Intensity profiles giving rise to a 1/f spectrum will contain fluctuations
which might be mistaken for normal segregation, but the important finding is the lack of
any underlying periodicity. In contrast to area 17, segregation appears to proceed normally
in area 18 of dark-reared cats (Swindale 1981b, 1988, Moweret al 1985).

2.4.3. Removal of all spontaneous retinal activity.If transmission of signals from the retina
to the lateral geniculate nucleus (LGN) is abolished by intraocular injections of tetrodotoxin,
segregation fails to occur in either area 17 or 18 of kittens (Stryker and Harris 1986). This
suggests that normal segregation in area 17 of the cat requires both visually evoked and
spontaneously occurring neural activity in the retina. Spontaneous activity in the LGN, if it
occurs in the absence of retinal inputs, is not sufficient. In area 18 of the cat and in area 17
of the macaque, spontaneous retinal activity alone is sufficient.

2.4.4. Strabismus and anisometropia.Artificially induced strabismus (usually produced by
cutting the lateral or medial rectus muscle) in the cat results in a more sharply segregated
pattern of left- and right-eye inputs (i.e. less overlap at the boundaries (Shatzet al 1977)).
It also significantly increases the size and spacing of the patches in area 17 (Löwel 1994).
Preliminary reports also suggest that ocular dominance columns in rhesus monkeys made
artificially anisometropic (by rearing with a−10D lens in front of one eye) might be more
widely spaced and more irregularly organized than normal (Roeet al 1995). Taken together,
these observations suggest that although ocular dominance segregation can occur prenatally,
without visual experience, abnormal postnatal visual inputs can cause changes in subsequent
columnar organization which go beyond the narrowing or widening of stripes produced by
monocular deprivation. In particular, both results suggest that ocular dominance column
spacing is not necessarily determined by intrinsic intracortical interactions. A comparable
result, suggesting the possibility of postnatal reorganization of orientation columns has
recently been reported (Blasdelet al 1995) and is described below (in section 2.6).

2.4.5. The role of the subplate.Destruction of subplate neurons in the cat during the first
or third postnatal week (Ghosh and Shatz 1994) results in a failure of segregation of LGN
inputs within layer IV of the cortex. This is a hard result to explain, but one clue is the
probable presence of reciprocal connections between the subplate neurons and layer IV in
the first few postnatal weeks (Friaufet al 1990, Callaway and Katz 1992). These pre-
existing connections may serve as a physiological scaffolding to ensure that LGN axons
reach their correct sites within layer IV, perhaps using correlated neural activity as a guide.
In the absence of this scaffolding, the resulting lack of a normal topography might then
cause segregation to fail. It has also been observed that destruction of subplate neurons
leads to a loss of layer IV neurons (Ghosh and Shatz 1994) so perhaps it is the loss of their
normal targets that prevents geniculate axons from segregating.

2.4.6. Interference with intracortical transmission.A number of experiments have shown
that the effects of monocular deprivation in the kitten can be prevented by manipulations
that are likely to interfere with normal synaptic function in the visual cortex. These
include infusion of NMDA receptor antagonists (Kleinschmidtet al 1987, Bearet al 1990);
muscarinic M1 receptor antagonists (Gu and Singer 1993); combined removal of cholinergic
and noradrenergic afferents to the cortex (Bear and Singer 1986) and combined blockage of
serotonin 5-HT1 and 5-HT2 receptors (Gu and Singer 1995). Because these manipulations
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appear to block the removal of relatively inactive geniculate synapses within the cortex, it is
likely that they will interfere with the process of segregation as well, although this question
has not been addressed experimentally. Infusion of the GABA agonist muscimol into the
cortex of monocularly deprived kittens leads to a shift in the ocular dominance histogram
in favour of the deprived eye (Reiter and Stryker 1988). This paradoxical result can be
explained in Hebbian terms if it is supposed that:

(i) inactive synapses are removed only when the postsynaptic membrane is depolarized;
and/or

(ii) increased levels of presynaptic activity cause a weakening of synaptic inputs when the
postsynaptic membrane is simultaneously hyperpolarized.

The neurotrophins NT-4/5, and brain-derived neurotrophic factor (BDNF), both of which
bind with a receptor known as TrkB, were found to block formation of ocular dominance
columns when infused into kitten visual cortex (Cabelliet al 1995). Infusion of nerve growth
factor (NGF) or NT-3 did not have the same effect. This result suggests that stimulation of
the TrkB receptor overrides whatever signal causes axonal retraction during segregation.

2.5. Orientation columns in adult animals

Most neurons in mammalian visual cortex respond best to a bar or an edge moving at
an appropriate orientation and velocity over the receptive field (Hubel and Wiesel 1962,
1968). A graph of response versus orientation allows one to estimate the cell’s preferred
orientation (the orientation giving the largest response) and the selectivity for orientation
(e.g. the width of the curve at half height). Cells in the same column of tissue tend to have
the same orientation preference (Hubel and Wiesel 1962, 1968, 1974a) although, in the cat,
orientation preferences of neighbouring neurons can differ by as much as 30◦ (Lee et al
1977, Hetheringtonet al 1995). Whether orientation selectivity in the macaque visual cortex
is more orderly than this has not been established. When a recording electrode is moved
sideways past a series of columns, the preferred orientation rotates at nearly constant rates
over distances of a millimetre or more (Hubel and Wiesel, 1974a) although the direction
of rotation (clockwise or counter-clockwise) can change unpredictably. Occasionally,
discontinuous jumps of up to 90◦ in preferred orientation are seen. Similar findings were
made in the cat by Albus (1975b) and in the tree shrew by Humphrey and Norton (1980).

Despite the clear-cut one-dimensional evidence provided by recording electrodes, it
proved hard to generalize to the probable two-dimensional layout of orientation preferences,
and a number of different models were proposed (Hubel and Wiesel 1977, Braitenberg and
Braitenberg 1979, Swindale 1982a, 1985, Dow and Bauer 1984). The issue was resolved by
the development of the technique of optical recording, in which neural activity is detected
with a sensitive camera, either after first applying a voltage-sensitive dye to the surface of
the cortex, or by recording small changes in the reflectivity of neural tissue which occur in
response to neural activity. Using the former of the two methods, Blasdel and Salama (1986)
and Blasdel (1992a, b) recorded the activity evoked by stimuli of different orientations at
different positions across the surface of the visual cortex in the macaque monkey. Figure 3
shows, in colour-coded form, the characteristic layout of orientation preferences revealed
by this method. Some of the important features of the orientation topography (summarized
in table 1) are:

(i) periodicity (which can be measured from two-dimensional Fourier power spectra: see
(Obermayer and Blasdel 1993, Blasdelet al 1995)) of about 680µm, in agreement with
earlier estimates based on electrode recording (Hubel and Wiesel 1974a);
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(ii) linear zones, i.e. regions in which the iso-orientation domains are approximately parallel
slabs of uniform width;

(iii) saddle points, i.e. regions which define a local peak in orientation value in one direction
and a local valley in the orthogonal direction;

(iv) half-rotationsingularitieswhere a single set of orientation domains meets at a point;
(v) fractures, elongated regions characterized by a high orientation gradient, extending from

the singularities.

Figure 3. Composite figure showing the arrangement of orientation domains (a single colour
represents a unique range of orientation preferences) and their relationship with ocular dominance
column boundaries (white lines). The images were obtained by optical recording in macaque
monkey striate cortex. Note that the iso-orientation domains tend to intersect ocular dominance
column borders at right angles. (Figure supplied by K Obermayer, from data presented in Blasdel
(1992b).)

Similar maps of orientation preference were found in areas 17 (Swindaleet al 1990) and
18 (Swindaleet al 1987) of the cat, by making multiple electrode penetrations and recording
orientation preferences at numerous closely spaced sites in the upper layers of the cortex.
More detailed maps were subsequently obtained by optical recording in area 18 (Bonhoeffer
and Grinvald 1991) and show essentially similar features. The overall periodicity of the
orientation columns in the cat is about 1.0–1.2 mm in area 17 (Albus 1979, Löwel et al
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Table 1. Cardinal features of the retinotopic, orientation and ocular dominance maps in macaque
striate cortex (modified from Obermayeret al 1992).

Number Feature

1 The maps of orientation selectivity and ocular dominance have statistically similar properties across the
cortex.

2 Orientation preference changes continuously as a function of cortical location except at singularities of
index ± 1

2 , which appear in approximately equal numbers.

3 There are line-like regions, across which orientation preferences change rapidly with distance (‘frac-
tures’), extending from the singularities.

4 There are linear zones, approximately 800× 800 µm2 in area, bounded by singularities, within which
iso-orientation regions are organized as parallel slabs.

5 Correlations between the orientation vector and the orientation gradient vector are weak or absent.

6 The autocorrelation function for orientation preference is positive, with zero average orientation differ-
ence, for distances< 200 µm and negative for intermediate distances of about 200–800µm. Corre-
lations for distances> 800 µm are weak or absent. Correspondingly, the Fourier power spectrum is
approximately annular, with a peak spatial frequency of about 1.4–1.8 cycles/mm.

7 The ocular dominance pattern in layer IVc is organized into sharp-edged stripes which sometimes branch
and terminate. The Fourier power spectrum is annular or bi-lobed, with a peak spatial frequency of
around 1.25 cycles/mm.

8 Iso-orientation slabs often cross the borders of ocular dominance bands at right angles.

9 Singularities tend to align with the centres of the ocular dominance stripes.

10 Regions of poor orientation selectivity are found in the upper layers of the cortex, above the centres of
ocular dominance stripes.

11 Within layer IVc there is an orderly retinotopic map for each eye, which is divided between the stripes
in such a way that the field positions represented at the edge of a stripe correspond retinotopically to
the field positions mapped in the centres of adjacent stripes.

1987, Diaoet al 1990) and about 1.2–1.4 mm in area 18 (Löwel et al 1987 Cynaderet al
1987). In the cat and in the tree shrew (Humphreyet al 1980), iso-orientation domains,
for all orientations, show a tendency to be elongated in a direction perpendicular to the
area 17/18 border. Little is known about the morphology of orientation columns in species
other than the cat, tree shrew and monkey, although this information would be of interest.

2.6. Singularities

Singularities (often referred to somewhat less technically as pinwheels, see e.g. Bonhoeffer
and Grinvald (1991)) can be classified into two kinds, positive and negative, depending upon
whether the sequence of preferred orientation rotates clockwise for clockwise movement
around the singularity, or anticlockwise. Obermayer and Blasdel (1996) analysed the
distribution of singularities in maps obtained by optical recordings in squirrel and macaque
monkeys. Histograms of the distances between nearest-neighbour singularities showed them
to be more regularly spaced than a random distribution of points of the same overall density,
although no consistent geometrical pattern was observed. Approximately 80% of nearest-
neighbour singularities were of opposite sign: in other words, singularities of the same sign
behave as though they repel each other, while unlike singularities are weakly attracted.
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The overall density of singularities is best expressed relative to orientation column
periodicity because, other structural factors being equal, the density can be expected to
scale with the periodicity. In the macaque, the measured density (Swindale 1992a, Blasdel
et al 1995, Obermayer and Blasdel 1996) appears to vary between about 3.0 and 4.5/λ2

OR,
where λOR is the spatial wavelength of the orientation domains. This corresponds to a
density of about 8 per mm2. The densities of positive and negative singularities are similar
(Blasdelet al 1995, Obermayer and Blasdel 1996). In the cat (Diaoet al 1990), singularity
density appears to be lower than in the macaque: in areas 17 and 18 it is about 1.0/λ2

OR
(1.3 per mm2, λOR = 1.14 mm) although in the 17/18 border region a somewhat higher
density of about 2.3/λ2

OR (3.0 per mm2) was measured. This difference may be a result of
the greater tendency for iso-orientation domains to be locally parallel in the cat.

2.7. Development of orientation columns

In macaque monkeys (Blasdelet al 1995) optical recording experiments show that a normal
pattern of iso-orientation domains is present by at least 31

2 weeks of age (younger monkeys
have not so far been studied with this method). In kittens, optical recording shows that
orientation columns are present, in rudimentary form, at 17 days of age (Kim and Bonhoeffer
1993). Between this time and 21 days a more orderly arrangement emerges. The eyes open
at about 10 days, so it is possible that visual stimulation plays some role in column formation
or refinement. However, both orientation selectivity and apparently normal columnar order
are present in newborn macaque monkeys (Wiesel and Hubel 1974), and orientation selective
cells can be found in visually inexperienced kittens (Blakemore and Van Sluyters 1975,
Sherk and Stryker 1976, Albus and Wolf 1984). Thus, as with the formation of ocular
dominance columns in the monkey, visual experience is not an essential component of the
initial development of orientation selectivity or of its columnar organization.

2.8. Genes versus the environment

The question of whether or not the orientation preferences of cortical neurons are plastic
in early development has aroused both interest and controversy. One view, inspired by
the presence of orientation selectivity in newborn macaques (Wiesel and Hubel 1974)
and visually inexperienced kittens (Hubel and Wiesel 1963, Sherk and Stryker 1976),
is that orientation preferences are genetically determined and are therefore likely to be
unmodifiable; another is that preferences result from oriented visual stimulation and can
change when, for example, an animal is exposed to a visual environment in which lines of a
narrow range of orientations predominate (Blakemore and Cooper 1970, Hirsh and Spinelli
1970).

The experimental evidence for and against these possibilities has been extensively
debated (see e.g. Barlow (1975), Blakemore (1978), Movshon and Van Sluyters (1981),
Swindale (1982b), Frégnac and Imbert (1984), Mitchell and Timney (1984), Rauschecker
(1991)), with many, though not all, authors tending to favour the probability of postnatal
modifiability. Recent observations made with the optical recording method add yet another
interesting twist: Blasdelet al (1995) studied a series of infant monkeys of different ages and
found that ocular dominance columns increase in size with age, at a slightly greater rate than
do the orientation columns. Because the increase in size of the ocular dominance columns
matched the growth of the cortex as a whole, Blasdelet al suggest that it is possible that the
orientation map, and the preferences of individual neurons, might reorganize substantially
during development. Therefore, while orientation columns may be present in very young
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monkeys, and, like ocular dominance columns, may form without visual inputs, substantial
reorganization might take place postnatally. The observations of Roeet al (1995) of the
effects of early anisometropia in rhesus monkeys suggest that ocular dominance column
morphology might also change postnatally, after an initial innately determined process of
column formation (Horton and Hocking 1996).

Given these suggestions, and Löwel’s (1994) discovery that strabismus changes the
spacing of ocular dominance columns in the cat, it now seems possible that both sides in
the debate may turn out to be correct: in the monkey (and to a lesser extent in the cat), both
orientation and ocular dominance columns may be capable of forming in the absence of
visually driven inputs, but structural reorganization may occur postnatally, especially when
very abnormal forms of visual stimulation are present. Section 14.2 discusses some possible
reasons for this.

2.9. Structural relationships between the different columnar systems

The maps of visual field position, ocular dominance and preferred orientation have a number
of interesting structural relationships, which will be considered in turn.

2.9.1. Retinotopy and ocular dominance.In the macaque, within the central 5◦ of the
visual field and in the fovea, ocular dominance stripes run in directions which have little
relation to visual field coordinates (figure 2). More peripherally, the stripes run roughly
circumferentially (LeVayet al 1985). The functional significance of this arrangement, if
any, is unclear. Within layer IVc, where the geniculate afferents terminate and receptive
fields are concentric, monocular and small, a very precise map of receptive field position
is observed (Hubelet al 1974, Blasdel and Fitzpatrick 1984). As the recording electrode
moves across layer IVc, perpendicular to ocular dominance stripes, receptive field positions
shift at a constant rate in the direction predicted by the global retinotopic map. As the
electrode crosses from one eye’s ocular dominance stripe to the neighbouring one, receptive
fields shift into the other eye, to a field location corresponding to the centre of the preceding
stripe (figure 4). This arrangement is predicted by a number of the models of cortical map
development discussed below.

2.9.2. Ocular dominance, orientation columns and cytochrome oxidase patches.
Examination of orientation tuning curves obtained in long tangential penetrations through
monkey visual cortex (Livingstone and Hubel 1984a) showed that there are regions in the
upper layers of the cortex in which orientation selectivity is relatively poor or absent, with
cells responding at all orientations of the stimulus. These regions, which are about 150–
200 µm in diameter and about 400µm apart, were found to coincide with patchy dark
spots seen in histological stains (figure 5) for the cytochrome oxidase (CO) enzyme. Earlier
experiments had shown that the CO patches were located in the centres of ocular dominance
stripes (Horton and Hubel 1981, Hendricksonet al 1981, Horton 1984).

It is easy to demonstrate the CO patches histologically and it has been suggested
(Livingstone and Hubel 1984a) that they are signposts for functionally and anatomically
distinct channels in visual processing. As well as marking the centres of ocular dominance
columns and having poor orientation tuning, cells within the patches and in columns which
pass through them, have been reported to respond preferentially to low spatial frequencies
(Tootell et al 1988a) and to be selective for coloured stimuli (Livingstone and Hubel 1984a,
Ts’o and Gilbert 1988, Tootellet al 1988c). In addition, the patches have been shown
(Livingstone and Hubel 1984a, Hubel and Livingstone 1987) to project to distinct regions
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Figure 4. The probable fine-scale mapping of the visual field within single ocular dominance
columns in layer IVc of the macaque monkey. In the bottom part of the figure, corresponding
receptive field positions in the two eyes are represented by the numbers 1, 2, . . . , 10 in the left
eye and 1′, 2′, . . . , 10′ in the right eye. The upper part of the figure shows how these positions
may be mapped within alternating left and right eye ocular dominance stripes in the cortex. A
recording electrode moving sideways through the stripes would record the sequence of receptive
field positions indicated by the arrows in the lower part of the figure.

(thin, darkly staining CO stripes) within area 18 (V2). Although it is highly plausible that
the CO patches would contain cells with distinctive physiological properties, some recent
studies have suggested that the chromatic tuning of cells within the patches (Lennieet al
1990, Leventhalet al 1993), their orientation tuning (Edwards and Kaplan 1992, Leventhal
et al 1993) and their contrast sensitivity (O’Brienet al 1995) are no different from cells

Figure 5. A cytochrome-oxidase stained section through the upper layers of the striate cortex of
a macaque monkey. The overall elongation of the blobs in a roughly vertical direction probably
indicates the direction of the associated ocular dominance stripes, which are not directly visible.
(From Tootellet al 1988a.)
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outside the patches. Although most of these contradictory findings have so far only appeared
as abstracts (Lennieet al (1990) is the exception) the physiological distinctiveness of the
CO patches should perhaps not yet be taken for granted.

Orientation singularities in the macaque have been shown to occur more frequently
in the centres of ocular dominance stripes (Blasdel and Salama 1986, Swindale 1992a,
Blasdel 1992b, Obermayer and Blasdel 1993). Although this suggests an association with
CO patches, and, thereby, with regions of poor orientation selectivity, this is difficult
to prove because the optical recording method averages the signals from many different
neurons. Thus, a cortical region containing an orientation singularity may appear to
have broad orientation tuning simply because signals from cells with a wide variety of
orientation preferences are spatially averaged. One solution to this problem is to combine
optical recording or CO staining with microelectrode recording† and measure the orientation
selectivity of individual neurons, close to a singularity. Such evidence suggests that cells
close to the centres of CO patches do not have unusually broad orientation tuning (Edwards
and Kaplan 1992) but that local variability of preference is greater in these regions. This
would be consistent with an association between singularities and CO patches.

Optical recording experiments (Blasdel 1992a, b, Obermayer and Blasdel 1993, Blasdel
et al 1995) have shown a striking tendency for iso-orientation domains within the linear
zones in the orientation maps to cross the borders of ocular dominance stripes at right angles
(figure 3). To this extent, the arrangement is similar to Hubel and Wiesel’s (1977) ‘ice-cube’
model of the visual cortex, although the presence of fractures, singularities and saddle zones
in the orientation map means that this model cannot be true in a general sense. However,
the reasons for the arrangement may well be those originally proposed by Hubel and Wiesel
to justify the ‘ice-cube’ model, i.e. that it is a way of ensuring that all combinations of
eye and orientation preference are represented within a volume of tissue no larger than the
cortical point image (Hubel and Wiesel 1974b, 1977, Swindale 1991). Although it was not
initially apparent (L̈owel et al 1988), recent optical recording data from kitten visual cortex
(Hübeneret al 1995) suggest that a similar locally orthogonal relationship exists in the cat.

2.9.3. Orientation columns and retinotopy.Although some models predict a relationship
between orientation gradient and local variations in magnification factor, there has been no
direct test of this yet and there has been no indication so far of any relationship between
the layout of orientation preference and receptive field topography in the monkey. In
cat area 18, where magnification factor is anisotropic by a factor of 2–5 (Cynaderet al
1987), iso-orientation domains show a strong tendency to run perpendicular to the direction
in which magnification factor is largest. The cortical point image is also elongated in this
direction, i.e. along the axis of greatest magnification factor. Similar relationships may exist
in primates, but have not yet been noted. One reason for this may be that magnification
factor anisotropies seem to be relatively small in these species and may not be present
everywhere.

2.10. Analysis of experimental data

The experimental data are for the most part two-dimensional patterns which are essentially
geometrical in nature. Comparison of a model with experimental data usually relies upon
a visual impression of similarity between the experimental and computed images. While

† Even this method has its problems because, wittingly or unwittingly, microelectrode recordings can easily
be multi-unit and, therefore, may also underestimate orientation tuning strength where there is significant local
variability in preference.
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this may be good enough for many purposes, it would be desirable to go further than this
and find objective ways of quantifying and describing the various kinds of pattern that
experimenters have come up with. Unfortunately, little work has been done in this area and
most experimenters have been content to describe their visual impressions with vague terms,
such as ‘banded’, ‘beaded’, ‘patchy’, ‘blobby’† etc. Simple techniques, such as calculating
the two-dimensional autocorrelation function, or the power spectrum (see e.g. Swindaleet al
(1987), Diaoet al (1990), Blasdelet al (1995)) are helpful in identifying periodicity and/or
local order, but these measures do not manage to capture other pattern characteristics such
as the extent to which the pattern is banded or patchy. So far, analytical techniques which
would allow a quantification of these visual characteristics have either not been developed,
or not used. Such measures which, ideally, should avoid the use of subjective estimates (e.g.
of the centres of blobs, as in Andersonet al (1988)) would be very helpful in comparing
results obtained in different areas and species and in assessing the realism of the outputs of
different models. The recent quantitative comparison by Obermayer and Blasdel (1996) of
singularity distributions in primate visual cortex and in a number of different models is a
welcome development in this direction.

3. The models

Models necessarily simplify reality and make assumptions; if they did not, they would be
of little use. Assumptions may be general principles (e.g. conservation laws), ideas about
the behaviour of parts of the system (e.g. learning rules) or about the values of quantities
for which reliable experimental data are lacking. Simplifying assumptions are often forced
upon modellers by computational necessity, if not by conceptual elegance. For example,
a synapse may be represented by a number, or a visual stimulus may be represented as a
point in a stimulus space rather than as a luminance distribution in visual space. All kinds
of assumption-making are fraught with difficulty for modellers in neurobiology. General
principles which state that some measure is held constant, or minimized or maximized during
development, may be very useful, but their application will be different in biology than in
physics: there is no guarantee that biological mechanisms will adhere to them rigidly, or
that the principles will generalize to other species or different developmental situations.
Certain assumptions about biological mechanisms may be well supported by experimental
observations, but incorporating them in a working model almost always forces the modeller
to make other, less well tested, assumptions. While the aim of making a model detailed
and testable throughout is laudable, the more detail that is put in, the more numerous are
the possibilities for disproof. If the detail is not strictly necessary for the model to work, it
may be unwise to include it.

Certain types of simplification can lead to powerful and elegant models and it will then
be hard to interpret the behaviour of the model in biological terms. But, if we agree with
von Neumann, if the model works, this should not worry us too much.

3.1. A general overview

Table 2 lists a number of different models of visual cortex organization. One class of
model (see e.g. Hubel and Wiesel (1977), Braitenberg and Braitenberg (1979)) simply
proposes an arrangement and does not suggest a computational or developmental process

† Use of these neutral adjectives is nevertheless preferable to the widely used term ‘module’, which is laden with
undemonstrated functional implications and is not as descriptive anatomically (Swindale 1990).
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that could give rise to the proposed pattern. A second class proposes some relatively simple
computational procedure such as band-pass filtering (see e.g. Rojer and Schwartz (1990))
which will generate a possible set of structures, without necessarily suggesting that the
algorithm mimics real development. A third class of model is loosely based on rather
general developmental principles and simplifies the computational problem in some way, so
that the structure of the model is somewhat abstract. Models based on lateral interactions
whose origin is not specified (see e.g. Swindale (1980, 1982a)) and dimension-reduction
models (see e.g. Durbin and Mitchison (1990), Obermayeret al (1992a, b)) can be placed
into this class. Finally, many neural net models based explicitly upon Hebbian learning rules
have been proposed. These fall into two main classes: linear and nonlinear models based on
local Hebbian modification rules (see e.g. von der Malsburg (1973), Linsker (1986c), Miller
et al (1989), Tanaka (1989)) and those based on Kohonen’s (1982) competitive learning
algorithm (see e.g. Obermayeret al (1990), Goodhill (1993)).

Nearly all the neural net models of visual cortical development proposed so far are
based on a common set of postulates. These are:

(i) Hebb synapses;
(ii) correlated or spatially patterned activity in the afferents to cortical neurons;
(iii) fixed connections between cortical neurons which are locally excitatory and inhibitory

at slightly greater distances;
(iv) normalization of synapse strength.

Normalization typically ensures that the sum of the synaptic weights converging on each
postsynaptic neuron remains constant, or that the sum of the weights of each input cell
remains the same, or some combination of the two. The constraints can be enforced by
dividing or subtracting appropriate values from the weights.

Von der Malsburg (1973) was the first to show that these rules could lead to the
emergence of spatial order in receptive field properties in a two-dimensional array of
neurons. Subsequent papers by von der Malsburg and Willshaw (1976) and Willshaw
and von der Malsburg (1976) showed how similar rules could lead to the emergence of
topographic order and ocular dominance columns. More recently, Linsker (1986a, b, c) and
Miller et al (1989) have extended the scope of these models by devising linear versions
of the learning equations, by carrying out more extensive computations, and by making
modified assumptions about the properties of the input correlations.

One class of successful model has been inspired by the idea that the visual cortex is
a dimension-reducing map (Kohonen 1982, 1988, Mitchison and Durbin 1986, Durbin and
Willshaw 1987, Durbin and Mitchison 1990). This follows, given that every point on the
cortical surface can be assigned a list of stimulus values, for example, a receptive field
position, an eye dominance value and a preferred orientation. This defines a point (or
a region, if receptive field size and orientation tuning width are taken into account) in a
high-dimensional space whose axes are the values of the stimuli in question. It is often
helpful to think of the cortex as a sheet which is folded into this space in an orderly way
determined by the values of eye dominance, retinal position and orientation at each point
on its surface. Dimension-reduction models assume that this folding (or inverse mapping)
attempts to satisfy two conflicting goals:

(i) to keep the sheet locally smooth;
(ii) to ensure that it passes through a representative selection of points in stimulus space.

Algorithms which achieve such projections have been devised (Kohonen 1982, Durbin and
Willshaw 1987) and applied to the visual cortex (Durbin and Mitchison 1990, Goodhill
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Table 2. Summary of models.

Author(s) Retinal/LGN inputs Cortical modification rule

Retinotopy
Willshaw and von der Malsburg (1976) neighbouring pairs of units Hebbian
Willshaw and von der Malsburg (1979) chemical markers chemo-similarity

Ocular dominance
von der Malsburg and Willshaw (1976) neighbouring pairs of units Hebbian
von der Malsburg (1979) chemical markers chemical markers
Swindale (1980) n/a lateral interactions
Miller et al (1989) radially uniform correlations Hebbian correlation
Goodhill and Willshaw (1990) points in a stimulus space dimension reduction (elastic net)
Tanaka (1990) radially uniform correlations Hebbian, thermodynamic
Rojer and Schwartz (1990) n/a spatial filtering
Joneset al (1991) n/a n/a
Montagueet al (1991) travelling waves Hebbian plus chemical diffusion
Goodhill (1993) radially correlated noise competitive Hebbian (Kohonen)
Elliott et al (1996a, b, c) circular patches competition for neurotrophins,

simulated annealing

Orientation
von der Malsburg (1973) elongated patches Hebbian
Braitenberg and Braitenberg (1979) n/a unspecified
von der Malsburg and Cowan (1982) initially uncritical initial preferences, lateral interactions
Bienenstocket al (1982) oriented stimulation Hebbian
Swindale (1982) n/a lateral interactions
Linsker (1986) uncorrelated noise Hebbian, simulated annealing
Soodak (1987) n/a derived from the retinal mosaic
Barrow (1987) natural images competitive Hebbian (Kohonen)
Durbin and Mitchison (1990) points in a stimulus space elastic net
Obermayeret al (1990) elongated patches competitive Hebbian (Kohonen)
Tanaka (1990) radially correlated noise Hebbian, thermodynamic
Rojer and Schwartz (1990) n/a gradient of filtered noise
Miller (1992, 1994) radially uniform correlations, Hebbian

negative correlations between
ON and OFF inputs

Miyashita and Tanaka (1992) radially uniform correlations, Hebbian, thermodynamic
negative correlations between
ON and OFF inputs

Niebur and Ẅorgötter (1993) n/a spatial filtering

Orientation and ocular dominance
Hubel and Wiesel (1977) n/a n/a
Götz (1988) n/a neural activity gradient
Yuille et al (1991) points in a stimulus space dimension reduction
Obermayeret al (1992) points in a stimulus space low-dimensional Kohonen
Swindale (1992) n/a lateral interactions, competition

between feature specificity
Grossberg and Olson (1994) n/a filtering in the frequency domain
Erwin et al (1995, figure 11) points in a stimulus space elastic net

and Willshaw 1990, Obermayeret al 1991, 1992a, b) and result in descriptively accurate
patterns of retinotopy, ocular dominance and orientation preference. Although it is easiest to
conceive of the behaviour of these models in abstract geometrical terms, as outlined below
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(in section 9), their behaviour is closely analogous to that of a competitive Hebbian learning
network in which modifications in connection strength are made to those cells which are
maximally responsive to a given stimulus at any one time, with lesser modifications made
to neighbouring cells.

For orientation and ocular dominance columns, simpler approaches than those used in
neural network models can be adopted. It is possible to elaborate on the simple ideas
of left–right eye competition proposed by Hubelet al (1977) to explain the formation
of the characteristic striped pattern of ocular dominance (Swindale 1980). This model,
which involves lateral inhibitory effects on the growth of synapses, is relatively simple
to implement computationally and can be formulated mathematically as a single integro-
differential equation. It is possible to show (Milleret al 1989) that the postulated lateral
interactions can result from a Hebbian mechanism like that initially proposed by von der
Malsburg (1973), although interpretation in terms of locally acting diffusible growth factors,
or a combination of several different mechanisms is equally possible. Similar ideas can be
used to describe the development of spatial pattern in the map of orientation selectivity in
the cortex (Swindale 1982a) while the two models can be linked (Swindale 1992a, Erwin
et al 1995) so as to reproduce the structural relationships between orientation and ocular
dominance columns found experimentally in the monkey.

The following sections describe examples of specific models in more detail.

4. Von der Malsburg’s model for self-organization of orientation selectivity

Von der Malsburg (1973) invented a simple model cortex, consisting of 169E (excitatory)
and an equal number ofI (inhibitory) cells connected together in such a way thatE cells
excited neighbouringE cells and inhibited (via theI cells)E cells a slightly greater distance
away. EachE cell received excitatory connections from a set of 19 retinal input neurons
and each retinal neuron was connected with everyE cell, initially with a random synaptic
strengthsik from retinal celli to cortical cellk. The response,Hk(t), of a cortical cellk to
a stimulus patternAi(t) was given by the following nonlinear differential equation†:

dHk(t)

dt
= −αkHk(t) +

N∑
l=1

plkH
∗
l (t) +

M∑
i=1

sikA
∗
i (t) k = 1, . . . , N (1)

where αk is a decay constant,plk is the connection strength from celll to cell k and
H ∗(t) and A∗(t) are the values ofH(t) and A(t), respectively, after the application of a
threshold function. The first term on the right-hand side represents the natural tendency of
a neural response to decay with time, the second term represents the combined excitation
and inhibition produced via intracortical connections from other cortical neurons, while the
third term represents the direct effect of the retinal inputs to theE cells in the network.
The network was presented in turn with one of nine oriented patterns of activity in the
set of retinal neurons (shown in figure 6(A)). In each pattern, only seven of the 19 inputs
were active. Note that there is no topography in the retinal inputs, i.e. each retinal neuron
is connected to every cortical neuron. For each stimulus, an approximate solution to (1)
was obtained iteratively, following which the input synaptic strengths to theE cells were
changed according to the rule:

1sik ∝ A∗
i H

∗
k . (2)

† In presenting the equations for the different models I have used, for the most part, each author’s own mathematical
terminology. The meaning of a given symbol is therefore usually confined to the immediate context of the model
under discussion.
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Figure 6. (A) The nine different stimuli used by von der Malsburg (1973). The large dots are
active units. (B) The layout of orientation preference in the simulated cortex after 100 learning
steps. The dots represent units which failed to learn to respond to any of the stimuli. (Reprinted
by permission of Springer-Verlag from von der Malsburg (1973).)

After each learning step, the total of the synaptic strengths impinging on each cortical
E cell was normalized by multiplying thesik by a factor proportional to 1/

∑
i sik. As 1sik

is always positive, normalization is the only way of decreasing synaptic strengths. After
100 iterations, in each of which a complete set of nine activity patterns was presented, most
of the E cells in the network became selectively responsive to a small set of neighbouring
stimulus orientations. Furthermore, the preferred orientation of neighbouringE cells was
similar and changed systematically across the surface of the model cortex, much as had
recently been found in cats (Hubel and Wiesel 1962) and monkeys (Hubel and Wiesel 1968).
The pattern of orientation preferences produced in one of von der Malsburg’s simulations
is shown in figure 6(B).

Von der Malsburg’s neural net model was one of the first to incorporate a local
connectivity scheme based on short-range excitatory and longer-range inhibitory connections
in a sheet of cells. It was also the first model to produce a spatial topography of orientation
preference. Although the area of model cortex was small, the two-dimensional topography
seems quite similar to that now known to exist: e.g. figure 6(B) shows regions of continuous
change, evidence of an overall periodicity (of about five array units) and singularities. One
minor problem with the model results from the application of a threshold function to the
response of each cortical neuron: someE cells never responded to any of the standard
stimuli used (despite subsequent changes in the responsiveness of nearbyE cells) and so
remained ‘frozen’ during development. Subsequent modellers have avoided the problem
by using a mechanism (sometimes termed a ‘conscience’) which varies the probability of
a cell’s response according to how often it has responded in the past. A more important
issue concerns the model’s explicit dependence upon oriented patterns of stimulation during
development. At the time the model was formulated, it seemed possible that the development
of orientation selectivity in visual cortical neurons might be entirely a consequence of
environmental visual stimulation (Blakemore and Cooper 1970, Hirsch and Spinelli 1970,
Barlow and Pettigrew 1971), in which oriented patterns of activity on the retina would
be common. However, when orientation selectivity was demonstrated in newborn animals
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which had had, at the most, a few hours of visual experience (Wiesel and Hubel 1974,
Sherk and Stryker 1976) it became clear that visually driven neural activity could not be
the only initial determinant of orientation preferences. Although spontaneously occurring
retinal activity did not seem likely to show other than radially symmetric correlations (which
perhaps explains the dearth of neural net models of orientation specificity during the 1980s)
it has since been found that spontaneously occurring waves of activity can traverse the
developing prenatal retina (Galli and Maffei 1988, Meisteret al 1991, Wonget al 1993). A
model for this behaviour has been proposed (Burgi and Grzywacz 1994). It is possible that
this stimulation might be enough to drive the initial formation of orientation preferences in
cortical neurons, although Miller (1994) has argued that the waves are too slow and broad
to be sufficient. An alternative strategy, taken by Linsker (1986a, b, c) and Miller (1992b,
1994), is to examine the possibility that local, circularly symmetric, patterns of correlation
in retinal activity might drive the formation of orientation selective receptive fields. This is
discussed in more detail in sections 6 and 7.2.

4.1. Extensions of von der Malsburg’s model to retinotopy and ocular dominance column
formation

The inputs to von der Malsburg’s model cortex come from a retina whose projection to
the cortex lacks any topography, i.e. each retinal neuron projects initially to each cortical
neuron. An oriented pattern of retinal activity in this framework is a somewhat abstract
concept because it is only defined as activity in a subset of neurons (in von der Malsburg’s
model, seven out of 19 inputs were active while the others were silent) and the selection of
this subset is arbitrary, at least for the first pattern in the series. What is important is that

(i) different stimulus patterns overlap,
(ii) the pattern of overlap among members of the stimulus set implicitly defines a cyclic

stimulus space†. (This is easily seen from inspection of the stimuli shown in figure 6(A)).

What von der Malsburg’s network does (as do all neural nets) is to uncover structure in the
input stimulus space (a space which has as many dimensions as there are input neurons)
and, by virtue of the lateral connections, to make this structure explicit in the form of a
map on the surface of the cortex.

Given these considerations, it is natural to ask what types of map would be formed if
stimulus patterns other than the oriented set shown in figure 6 were presented to the network
during learning. For example, would localized clusters of activity in the retinal neurons lead
to the emergence of topographic order in the projection from the retina to cortex? What
kind of projection would form if the model retina were divided into two separate subsets of
neurons (i.e. left and right eyes) which were never (or rarely) simultaneously active? These
questions were answered in two subsequent papers (von der Malsburg and Willshaw 1976,
Willshaw and von der Malsburg 1976) which showed that localized clusters of activity in
the retinal neurons did indeed lead to the emergence of a spatial topography in the projection
from the retina to the cortex, provided that neighbouring clusters overlapped. During the
process of map formation, the connections made by each retinal neuron, which were initially
spread over the entire cortical surface, gradually contracted until each neuron made a dense

† One can define the similarity between two stimulus patterns most generally as the covariance between the
patterns or, more simply (in the case of inputs which are either 1 or 0), as the number of points the two stimulus
patterns have in common (the inverse of the Hamming distance between the patterns). For the stimulus patterns
shown in figure 6, it is obvious that each pattern is most similar to the two patterns adjacent to it and can be
mapped to a cyclic stimulus space of lower dimension 1, 2,. . . 9, 1, 2 etc.
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set of connections in a localized region of cortex. Correspondingly, the receptive fields of
the cortical neurons, which were initially large, became smaller until they were similar in
size to the activating clusters. As in the case of oriented inputs, synaptic normalization
plays a large part in the process of receptive field refinement. Thus, as the inputs from one
region of the retina to a cortical cell are strengthened, normalization ensures that the inputs
from other regions are weakened.

Having shown how this model could explain the formation of retinotopy and orientation
columns, von der Malsburg and Willshaw (1976) went on to show how it could explain
ocular dominance stripe formation. Using essentially the same equations as those used
previously (but with a modification, described in Willshaw and von der Malsburg (1976),
which made them more stable), they examined the projection that was formed when two
sets of retinal neurons were connected to the model cortex described above. As before,
random weights were assigned to the connection strengths between these neurons and the
cortex. Activity patterns were assumed to be locally correlated within each retina and
anticorrelated between the two retinas. Although each retina was small and consisted of
only five neurons, over time the projection from each retina to the cortex segregated into
periodic stripes (figure 7).

Figure 7. Formation of ocular dominance stripes in the model of von der Malsburg and Willshaw
(1976). The layout of cortical units is the same as in figure 6(B). (A) The initial layout of eye
dominance. (B) The final layout. (Reprinted by permission of Springer-Verlag from von der
Malsburg and Willshaw (1976).)

Segregation in this model occurs for the following reason: clustered activity in one retina
gives rise to one or more regions of activity in the cortex (determined by the pattern of lateral
connections in the cortex). The strengthening of connections between these retinal inputs
and the active ones in the cortex increases the probability that a second pattern of retinal
activity, which partially overlaps with the first one, will activate a similarly overlapping
pattern of cortical activity. In other words, strengthening the connections from one region
of retina to one region of cortex increases the probability that the connections from nearby
regions of retina to nearby regions of cortex will be increased. At the same time, the laterally
inhibitory connections in the cortex restrict the size of the clusters of cortical activity and
the distance over which the locally cooperative effects are exerted. Anticorrelations between
the two eyes ensure that they are rarely active at the same time, so that when one eye’s
synapses are coactive with a cortical cell the less active synapses from the other eye onto
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the same cell will not be strengthened. Finally, normalization ensures that whenever the
inputs to a single cortical neuron from one eye are strengthened, inputs from the other eye
are, on average, weakened.

It would be possible, in principle, to scale up von der Malsburg and Willshaw’s network,
to give it a much larger and more realistically structured retina and cortex and to present
it with retinal activity patterns known to occur pre- or postnatally. In this form, the model
might be capable of addressing the three problems studied separately: retinotopy, orientation
selectivity and ocular dominance. However, at least until recently, it would have been
beyond the capabilities of most computers to carry out the necessary computations in a
feasibly short time. Partly for this reason, much of the work that followed that of von
der Malsburg and Willshaw attempted to simplify the problem in various ways, allowing
computational solutions to simpler (or more easily solved) sets of equations. The approaches
of Swindale (1980, 1982a), Kohonen (1982, 1988), Linsker (1986a, b, c), Milleret al (1989),
Durbin and Mitchison (1990), Goodhill (1993) and Obermayeret al (1990, 1991, 1992a,
b) all fall into this category. The abstractions involved in making these simplifications will
be considered in the following sections.

5. Swindale’s models for ocular dominance and orientation columns

5.1. Ocular dominance columns

The models of von der Malsburg and Willshaw lead to the emergence of spatial order
in the cortical map because of the existence of lateral interactions within the cortex that
are excitatory at short range and inhibitory at slightly greater distances. Without these
interactions, the weight values, and hence the receptive field properties of each cortical
neuron, would develop independently of each other, and no spatial order would emerge.
As described in the preceding section, the lateral interactions lead, in the case of ocular
dominance, to distance-dependent effects of weight changes between pairs of synapses in
the model. In the case of orientation preference, the net effect of the interactions is to cause
nearby locations in the cortex to develop similar orientation preferences, while locations that
are far enough apart to be reciprocally inhibitory will rarely respond to the same stimulus
and might be expected to develop preferences for stimuli that are maximally dissimilar, i.e.
orthogonally oriented.

This suggests that the description of how synaptic strengths change in the model,
and in the real brain, might be simplified by specifying only the variables which are
usually measured in experiments, namely the densities of left- and right-eye synapses, or an
orientation preference, on the surface of the cortex, and by assuming that these values change
interactively, with interactions that are cooperative over short distances and anticooperative
over slightly greater distances. For ocular dominance, the following approach can be
adopted: let the densities of left- and right-eye synapses at a pointr = (x, y) on the
cortical surface be described by the variablesnL(r) andnR(r) and suppose that the effect
of a small increase in the density of one type of synapse at a pointr1 on the growth of other
synapses at a pointr2 can be described by the functionw(r2−r1). Four types of interaction
are possible: right–right, left–left, left–right and right–left, for which four corresponding
interaction functions can be postulated:wRR, wLL , wLR andwRL. Assuming that the effects
add linearly, the growth rates of right- and left-eye synapses can be given as:

∂nR/∂t = (nR ∗ wRR + nL ∗ wLR) f (nR)

∂nL/∂t = (nL ∗ wLL + nR ∗ wRL) f (nL)
(3)
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where the symbol∗ denotes convolution, and the functionf (n) is used to terminate growth
as the synapse densityn reaches an upper or lower limit. Because synapse density cannot
be negative, an appropriate form forf (n) is the logistic function

f (n) = n(N − n) (4)

whereN is the maximum allowable synapse density: this ensures that 06 n 6 N . It is
convenient, although not essential, to makew a difference of Gaussians,

w(x, y) = A exp
{−(x2 + βy2)/2σ 2

E

} − B exp
{−(x2 + y2)/2σ 2

I

}
(5)

whereA andB are constants with the same sign;σE andσI are the space constants of the
lateral interactions, withσE < σI , andβ can be used (if6= 1) to introduce a local anisotropy
into the lateral interactions. For same-eye interactions (RR and LL)A andB will both be
positive, while for opposite-eye interactions (RL and LR) they will be negative. Initially,
nR and nL are assumed to be randomly distributed around some initial mean value (e.g.
N/2) with a small variance.

Computer solutions to these equations result in the formation of striped patterns under a
wide variety of choices of the parametersA, B, σE , andσI for each of the fourw functions
involved. Although the stability of the model to all possible choices has not been fully
explored†, there exist conditions in which bothnR and nL → N everywhere, which may
have some biological relevance, given that some animals lack ocular dominance stripes.
(Other regimes of the model, in which one, or bothnR andnL → 0 are obviously of less
biological interest). Although they are not a serious problem, these instabilities can be
avoided and the model simplified, by assuming (as did von der Malsburg) a constant total
density of left- and right-eye synapses, i.e.nR + nL = N at each point in the cortex. It
would be possible to implement this constraint as a separate computational step, but it is
simpler (although not equivalent) to note that it implies that∂nR/∂t = −∂nL/∂t , which
will be guaranteed ifwRR = −wRL andwLL = −wLR. Under these conditions, the model
equations reduce to

∂n/∂t = (n ∗ w + K)(1 − n2) (6)

where n = (nR − nL)/N , w = N2(wRR + wLL ) = −N2(wRL + wLR) and K =
N2

∫
(wRR − wLL )dr. The latter term,K, is a constant whose value will be zero if the

interaction between the eyes is symmetric. It will be non-zero when the interaction is
asymmetric, as may be the case in monocular deprivation, or when the projection from one
eye is stronger than the other, as in the cat. This equation leads to stable and spatially
inhomogeneous values ofn = ±1 everywhere, subject mainly to the constraints that∫

w(r)dr 6 0 and suitable initial values forn (e.g. random fluctuations around 0).
For small fluctuations ofn around zero (i.e.nR ≈ nL) and, denoting the Fourier

transforms ofn(r) andw(r) by N(ν) andW(ν), respectively, equation (6) gives‡
∂N/∂t ≈ NW + K. (7)

This has the solution

N(t) = N0 exp(Wt) + (K/W) {exp(Wt) − 1} (8)

whereN0 is the Fourier transform ofN at time t = 0. If n is initially randomly distributed
(as the biological data suggest) then its Fourier transform will contain energy distributed

† A linear stability analysis of the system may be less satisfactory than a computational exploration of it, given
the nonlinear nature of (3) and (4).
‡ Convolution becomes multiplication in the Fourier domain, andvice versa. A similar analysis can be carried
out for (3), leading to somewhat more complicated expressions for∂NR/∂t and∂NL/∂t .
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over a wide range of spatial frequencies†. According to (8), energies at different frequencies
will grow exponentially fast during the initial stages of development, with rates determined
by W , i.e. the Fourier transform of the lateral interaction functionw. It suggests that the
dominant spatial frequency in the final pattern will be that for whichW(ν) is a maximum‡.
Calculations have suggested that this is actually the case. It also suggests that a sufficient
condition for the formation of a periodic pattern is thatW(ν) should have a clearly defined
positive maximum. This is a requirement that will be satisfied by many different functional
forms of w(r).

Also of interest is the behaviour ofN(0), i.e. the DC component, or space-average value
of n. ProvidedW(0)(= ∫

w(r)dr) < 0, (8) has a stable equilibrium solution

N∞(0) = −K/W(0). (9)

When W(0) > 0 there is a risk of non-periodic stable states forming, in whichn =
either+1 or −1 everywhere, especially ifN(0) is not close to zero. This suggests that, in
animals which have ocular dominance columns,W(0) < 0.

This system (as defined by (3), or the simplified version given by (6)) is capable of
describing many of the observed phenomena of ocular dominance column segregation.
These will be discussed in the following sections.

5.1.1. Stripe morphology.By an appropriate choice of parameters forw and K (6) the
model can reproduce much of the inter-species variability in patterns, e.g. between cat and
macaque monkey (Swindale 1981a). Most morphological features in the real patterns can
also be found in the model patterns. These include Y- and H- type branches, a tendency
for stripes to narrow at branch points, periodic variability in width along the length of the
stripes and ‘islands’ (i.e. isolated spots or short patches and occasional small spine-like
protrusions from one stripe into an adjacent one).

5.1.2. Long-range order. In talapoin monkeys (Florence and Kaas 1992) and in the
peripheral visual field regions of the macaque (figure 2) ocular dominance stripes run in
a uniform direction; in addition, the frequency of branching is reduced so that, overall,
the pattern shows more long-range order. There are a number of possible reasons for
this. Slight departures from circular symmetry in the laterally trophic and atrophic effects
subsumed byw(r) cause the stripes to orient themselves so as to maximize their intersection
with the region within whichw is positive, and to minimize their intersection with the
region within whichw is negative (Swindale 1980). Another factor that can impose long-
range order is anisotropic expansion of the substrate in which the stripes are forming,
without commensurate expansion ofw(r). This causes the stripes to run parallel to the
direction of expansion (Swindale 1980). Both these factors might play a role in determining
the global organization of ocular dominance stripes in the monkey: it has recently been
suggested (Blasdelet al 1995) that growth of the visual cortex in the first few weeks of
life is anisotropic, while tracer injections (Yoshiokaet al 1996) show that lateral intrinsic
connections extend further in a direction perpendicular to ocular dominance columns. If, as
suggested by Tanaka (1991a), the growth equations are modified to include the continuous
spontaneous creation and removal of a proportion of left- and right-eye connections during
development, then the final pattern of stripes becomes more orderly, with a reduced number

† It should not be assumed that the spectrum will necessarily be flat: noise in biological systems is often 1/f

rather than flat.
‡ For (5) this frequency is given by:νmax = (1/π)[loge{(σI /σE)2(B/A)1/2}/(σ 2

I − σ 2
E)]1/2.
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of bifurcations: eventually these may disappear entirely, although the process is very slow
(Swindale, unpublished results).

5.1.3. Boundary effects.Ocular dominance stripes in most species show a tendency to run
at right angles into the borders of the area in which they are present. This can be explained
as a consequence of the truncation ofw(r) at the boundary: close to the boundary (across
which bothnR and nL = 0) the inhibitory surround is effectively elongated in a direction
parallel to the border, which causes the stripes to run in an orthogonal direction (Swindale
1980). This is a relatively weak effect however, and it would not be surprising if the factors
discussed in the preceding paragraph and/or others, played a more significant role.

5.1.4. Monocular and binocular deprivation.This can be expected to have many
consequences, including a reduction in the overall firing rates of retinal ganglion cells,
as well as changes in the spatio-temporal structure of their firing patterns. It is reasonable
to assume that monocular deprivation will lead to a reduced ability of the deprived eye’s
synapses to interact locally with other synapses, whether from the same, or the other eye.
One way of modelling this is to reduce the magnitude of the central, positive region of
(for right-eye deprivation) the functionswRR andwRL (e.g. by reducing the value ofA in
(5)). This has the effect of makingK (6) more negative, shifting the equilibrium mean
value of n (= N(0), equation (9)) to a negative value. The end result is to reduce the
territory occupied by the deprived eye. If the simulated deprivation is initiated at the start
of development, spots, rather than stripes, develop. If it is done for a short period in
the middle of development, or when the stripes are forced to have a common orientation,
narrow short stripes, rather than spots, are formed. This latter change corresponds with
what has been observed in the monkey (Hubelet al 1977). Given that it now seems likely
to be the case that ocular dominance stripes in the monkey are nearly fully formed at birth
(Horton and Hocking 1996), monocular deprivation beginning at birth probably satisfies this
requirement.

Binocular deprivation can be simulated by applying the changes assumed to occur with
monocular deprivation to both eyes. Under these conditions, the model will still generate
stripes. BecauseK remains unchanged by a symmetrical change to both eyes, any effects
on the mean value ofn will be relatively small; however, a consideration of the shape of the
Fourier transform ofw(r), (W(ν): figure 8) shows that the amplitude of the frequency for
whichW is maximum (νmax) will be reduced. Since it is this that determines the overall rate
of stripe formation, the rate at which stripes form should be reduced as a consequence of
binocular deprivation. Although the experimental finding (discussed above, in section 2.4.2)
of a permanently reduced degree of segregation in area 17 of binocularly deprived cats is
somewhat at odds with the predictions of the model, it may be helpful to note that the effects
of deprivation on the sizes of ocular dominance patches are mediated by a change in the
value ofW(0), whereas the effects of deprivation on the segregation rate are dependent upon
the values ofW(νmax). Therefore the two manipulations can, in principle, have independent
effects.

5.1.5. Transient and deprivation-induced ocular dominance columns.As described in
section 2.3, ocular dominance patches are present transiently in young marmosets but
disappear in adulthood†. They can be induced to remain permanently by monocular or

† A suggested reason for this (Pettigrew, personal communication) is that the eyes of the marmoset are close
together and, therefore, left and right retinal inputs are more highly correlated than in larger mammals.
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Figure 8. (A) Examples of difference-of-Gaussian lateral interaction functions,w(r), used in
the models of Swindale, and (B) their corresponding Fourier amplitude transforms,W(ν). The
frequency for whichW(ν) is a maximum,νmax, determines the periodicity of the stripes, while
W(νmax) determines the rate at which stripes form. Simulated visual deprivation (dashed lines)
causes a large decrease inW(0), but has several other effects, including a reduction in the
amplitude ofW(νmax) and an increase inνmax.

binocular deprivation. Similarly, monocular deprivation causes stripes to form in the
owl visual wulst, although they are not normally present. This apparently paradoxical
behaviour is consistent with the behaviour of the system defined by (3) where one can
choose parameters forwRR, wLL , wRL, andwLR such that both left- and right-eye synapses
show a net increase in density and segregation fails as both eyes eventually reach their
upper limiting density,N , everywhere. However, during this process the two eyes exhibit
a transient reciprocal patchiness (figure 9). If one eye (or both) is ‘monocularly deprived’
(using the same change described above, i.e. a reduction in the magnitude of its local effects
on growth) then the patchiness can persist as a stable state (figure 9).

5.2. Orientation columns

Extension of the above approach to orientation column formation is straightforward.
Because orientation is a cyclic quantity, it is convenient to represent it as a complex number,
z = a + ib. The orientation represented byz is then defined as

θ = 0.5 arctan(b/a) (10)

whereθ is cyclic over the range 0–π . The modulus ofz, |z| = (a2 + b2)
1/2

, is assumed to
bear some relation to the orientation tuning strength of the region in cortex in question. If
response (e.g. as measured in an optical recording experiment) as a function of orientation
is R(θ), then the componentsa andb might reasonably be defined as

a =
∑

i

R(θi) cos(2θi) b =
∑

i

R(θi) sin(2θi) (11)
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Figure 9. (TOP) Application of Swindale’s (1980) model to transient and deprivation-induced
ocular dominance segregation. Synaptic density is represented on a grey scale, with black
indicating a low density of synapses, and white a high density. The model equations were as
given in (3), (4) and (5), withN = 1 and synapse densities initially normally distributed with a
mean of 0.25 and a standard deviation of 0.05. The array size was 128×128. For the simulation
shown in the upper set of panels, parameters forwRR = wLL (equation (5)) wereA = 0.059,
B = 0.027, σE = 3.12, σI = 4.41; for wRL = wLR, A = 0.054, B = 0.029, σE = 3.56 and
σI = 5.03. Between time stepst = 50 andt = 100 a periodic distribution of inputs is present,
but this eventually disappears, withnr ≈ nl ≈ 1 everywhere. To obtain the result shown in the
lower set of panels, monocular deprivation was simulated by reducing the value ofA in wRR

from 0.059 to 0.045. All other parameter values, including the initial synapse density values,
were the same. The deprivation causes the transient patches to persist into the final pattern.
The inputs from the deprived eye are shown. Inputs from the non-deprived eye have a more
continuous distribution, with gaps corresponding to the centres of the patches of deprived eye
inputs. (BOTTOM) The Fourier amplitude transforms ofwRR, wLL etc, with horizontal axis values
in cycles per array pixel. (From Swindale, unpublished results.)
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whereθi is a set of orientations uniformly spanning the range 0–π . Note that ifR(θ) is flat,
or zero everywhere, then|z| = 0. This representation does not disambiguate a difference in
the height of an orientation tuning curve from a difference in its width, but this limitation
will be ignored for the present.

By analogy with the approach taken for ocular dominance column development, the
orientation vectorsz are assumed to be initially small in magnitude, with spatially random
orientations over the range 0–π . The change in orientation preference with time can then
be described by the equation (Swindale 1982a)

∂z/∂t = z ∗ wzf (z) (12)

wherewz is a (real) lateral interaction function which is positive for short distances and
negative for longer ones, andf (z) is used to set an upper limit on the value of|z|.
For most purposeswz can be defined as a difference of Gaussians (equation (5)) and
f (z) = (1 − |z|) will ensure that 06 |z| 6 1. Solutions to (12) resemble the patterns of
orientation preference found experimentally in the monkey and the cat. Most, if not all, of
the features observed experimentally can be identified in the computed patterns (figure 10).
These include point singularities of sign± 1

2 with a somewhat irregular distribution and
a density of about 3/λ2

θ where λθ is the period of the orientation columns, linear zones
and saddle points, and periodic variations in the orientation gradient which resemble those
found in the monkey (Swindale 1992a). The model additionally suggests that the orientation
singularities should occur in, or close to (see Swindale 1982a, appendix 2), patchy regions
of low orientation selectivity. As discussed above in section 2.9.2 there is circumstantial
evidence in favour of this, because optical recording experiments show a higher density
of orientation singularities in the centres of ocular dominance stripes, where, in the upper
layers of the cortex, regions of poor orientation selectivity have been reported.

The latter observation—that regions of poor orientation selectivity occur in the centres
of ocular dominance stripes—suggests that the development of orientation selectivity is
linked in some way to the development of ocular dominance. Swindale (1992a) suggested
that ocular dominance might interact with the development of orientation selectivity in the
following way:

∂z/∂t = z ∗ wz(1 − |n ∗ wn|)αf (z) (13)

whereα is a positive constant which describes the strength of the coupling between the
two systems, andwn and n are as defined above in (5) and (6). This has the effect of
reducing∂z/∂t in the centres of developing ocular dominance columns, where|n ∗ wn|
is greatest. Although this formulation is not particularly elegant it has the desired effects:
orientation singularities (and, as would be expected, regions of poor orientation selectivity)
tend to lie in the centres of ocular dominance stripes, and (as pointed out by Erwinet al
(1995)) iso-orientation domains tend to cross ocular dominance boundaries at right angles
(figure 10), as observed experimentally. Biologically, an interaction of this kind might occur
if orientation selectivity developed more slowly than ocular dominance and if plasticity was
turned off first in the centres of the ocular dominance stripes.

5.3. Conditions under which the models are valid

The use of a convolution kernel to describe the emergence of functional properties in the
cortex is valid only under certain conditions. These are:

(i) translational invariance, i.e. the interactions taking place between two locations on the
cortical surface depend only upon their lateral separation and not their absolute position;
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Figure 10. Simulation of combined orientation and ocular dominance column formation using
Swindale’s (1992) model. Ocular dominance borders are shown in white and a colour scheme
similar to that used in figure 3 is used to represent orientation preference. Singularities are
indicated by asterisks. Note that singularities tend to occur in the centres of ocular dominance
stripes and iso-orientation domains intersect ocular dominance borders at right angles, as found
experimentally (figure 3). The model equations were given in (5), (6), (10) and (13), with array
size = 256× 256, K = 0, α = 20; for wn, A = 2.64× 10−4, B = 1.54× 10−4, σE = 13.2,
σI = 18.9 andβ = 1.3; for wz, A = 1.75× 10−4, B = 1.06× 10−4, σE = 10.1, σI = 14.3 and
β = 1.

(ii) linearity, i.e. the combined effects of different locations on growth are the linear sum
of the effects exerted by individual locations;

(iii) slowness, i.e. growth must be slow compared with the time required to propagate the
interactions through the cortical substrate.

It might be thought that translational invariance will be violated, because the effect of
growth or removal of synapses in one location in a single geniculate arbor on the growth
of those in another location in a second arbor is likely to depend not just upon the cortical
distance between the two points in question, but upon the distance between the cell bodies
in the geniculate nucleus (and their corresponding retinal receptive fields) as well. However,
the model equations describe the aggregate effects of, and on, many different geniculate
axons at each cortical location. When an average is taken across the many different axons
present within each location the net effects on growth will tend to be invariant with position
in the cortex and will be only a function of cortical separation. Integrative linearity can
be loosely justified by the observation that many neurons in the visual cortex sum their
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inputs approximately linearly (Movshonet al 1978). If diffusion of chemical signals is the
substrate for the lateral interactions, linear additivity is also the simplest possibility. Finally,
the slowness assumption is probably justified, given that ocular dominance and orientation
columns take a few days, at least, to develop, while lateral interactions in the cortex are
likely to be transmitted rapidly, e.g. neural effects with a time course of milliseconds and
neurochemical ones (if present) with a diffusion time constant of a few seconds or less
(Crick 1970).

5.4. Empirical tests of the models

The best formal test of the models is to see whether, during development, cortical orientation
preferences, and/or ocular dominance values, change over time at rates predicted by the
convolution relations described above. For this, patterns of ocular dominancen (or
orientationz) would have to be measured at a series of times, e.g.t and t + 1, sufficiently
close together for small, but reliably measurable, changes in the pattern to have occurred.
Then, from (7) (assumingK = 0) a lateral interaction functionwt can be calculated by
deconvolution

wt = F {F(nt+1 − nt ) /F(nt )} (14)

where F( ) denotes Fourier transformation. The equation determiningwz is similar.
The test of the model would consist in showing that the calculatedwt resembled the
postulated ‘Mexican hat’ function in some way, and that this shape remained similar during
development. It is also possible to analyse the output from other types of model to see
whether their behaviour can be approximated by this simpler equation†.

5.5. The origin of the postulated interactions

Many possible mechanisms could give rise to the lateral interactions hypothesized above
and, in fact, related models based on lateral inhibition have been proposed to account
for periodic pattern formation in quite different systems (Meinhardt 1982, Young 1984).
As suggested above, correlation-based mechanisms of the type proposed by von der
Malsburg and Willshaw will give rise to distance-dependent cooperative and anticooperative
behaviour, although a formal similarity between these models and Swindale’s has not been
demonstrated. These types of mechanism are perhaps the best candidates at present, given
the amount of direct and indirect evidence to support the existence of Hebbian plasticity in
the developing visual cortex. From a broader biological perspective, however, it is likely
that factors other than correlation-based Hebbian strengthening might need to be taken into
account. For example, the strengthening of synapses on one part of an axonal arbor may
result in an increased transport of materials (proteins required for transmitter synthesis etc)
to that part of the arbor, resulting in a local facilitation of growth in that part of the arbor and
a weakening or removal of connections further away. Conversely, removal of connections
in one part of an arbor may result in an increased vigour of those further away (the ‘pruning
hypothesis’: Pockett and Slack 1982, Sabel and Schneider 1988). The spatial scale of these
interactions would be determined by the intracellular signalling mechanisms responsible for
regulating axonal growth.

† I analysed the output from an implementation of the model of Milleret al (1989), using similar parameter
values and applying divisive normalization of the inputs to cortical units, and recovered a close approximation to
the lateral interaction functionI (x).
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Other types of lateral interaction may be mediated by, for example, synaptically released
neurotrophins (Russell 1995), which diffuse through tissue and may modulate synaptic
growth and plasticity. Such an interaction is suggested by experimental data showing that
when a connection between an afferent and a postsynaptic neuron was strengthened by the
correlated stimulation of both cells, the connections from a nearby, but unstimulated, afferent
were strengthened as well (Kosselet al 1990). It is possible that the difference between
the two eyes is coded chemically in some way, although it has been shown that the inputs
from two genetically identical eyes from the same half of the body can be induced to form
eye dominance stripes within the frog tectum (Ideet al 1983). Although this does not rule
out the possibility that a chemical cue is used to distinguish the eyes in mammalian visual
cortex, it makes a neural activity based mechanism seem more likely. It seems similarly
unlikely, although not impossible, that orientation preferences could be coded chemically,
e.g. as a phase relation between two periodically distributed chemical signals. Such a model
might need to be considered if it turns out (as suggested by Gödecke and Bonhoeffer (1996))
that patterned neural activity plays no role in setting up the initial distribution of orientation
preferences in the cortex.

6. Linsker’s model for orientation columns

In a series of three papers, Linsker (1986a, b, c) studied the behaviour of a multi-layer
network, in which each point in any given layer projects connections approximating a
Gaussian distribution centred on a corresponding point in the layer above it. In its complete
form, the model has seven layers (although this is not an essential feature), with the first
layer providing randomly structured inputs to the second layer which then projects to the
third layer, and so on. Except in the seventh layer, assumed to correspond to a layer in the
visual cortex, lateral connections between units are absent. Both inhibitory and excitatory
connections occur and it is convenient to assume that a single connection can have a value
that is bounded by positive and negative values (e.g.+0.5 and−0.5). Although this is
biologically unrealistic, essentially similar results are obtained if separate excitatory and
inhibitory connections are assumed. The outputXM of a unit in any layerM (which
can also be positive or negative) is equal to the linear sum of its connection strengthswi

multiplied by the input values from the preceding layerL, plus a constanta1, i.e.

XM =
∑
i∈L

wiX
L
i + a1. (15)

Connection strengths are changed according to a Hebbian learning rule

1wi = c1(X
M − c2)(X

L
i − c3) + c4 (16)

wherec1–c4 are constants. This allows connection strengths to decrease as well as increase.
Connection strengths can be changed following each presentation of an activity pattern in
layerL to layerM, but, providing that constants are chosen so that the change in connection
strengths is small following each presentation, it is possible to average over an ensemble of
randomly varying presentations, and express1wi as a function of time-invariant statistical
properties of the activity in layerL. This leads to the following equation for1wi

1wi =
∑
j∈L

(QL
ij + k2)wj + k1 (17)

where k1 and k2 are constants and the quantityQL
ij = 〈(XL

i − xL)(XL
j − xL)〉

t
is the

autocorrelation function (or covariance matrix) of pointsi and j in layer L and xL is
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the average of activity inL over the ensemble of presentations. Weight values are kept
finite by clipping, so thatwmin 6 wi 6 wmax.

It is worth noting the main differences between Linsker’s network and von der
Malsburg’s.

(i) Each layer in the network sums its inputs linearly, i.e. there is no response thresholding.
(ii) Because of (i) it is possible to average over the effects of many stimulus presentations,

so that only the average spatial correlation functions of each input layer need to be used
to determine weight changes in the following layer.

(iii) There is no separate normalization process.

Linsker trained this network (naming the seven layers A–G) sequentially, first training
the connections from A to B, using random, uncorrelated noise (for whichQA

ij is the
identity matrix) as the input from A to B. Once the connections to layer B had stabilized,
the covariance functionQB

ij was calculated and used to train the connections between layers
B and C. This was repeated for subsequent layers. During this process, the receptive
fields of units in the layers became progressively more complex, in ways which resembled
the progression occurring in the visual pathways. Thus, the receptive fields in layers C
to F typically had a radially symmetric centre-surround organization, like those found in
retinal ganglion cells, LGN cells, and (in the monkey) cells in layer IVcα of the cortex.
In the absence of lateral connections in layer G, a variety of non-circularly symmetric
receptive field types developed, resembling orientation selective simple cells, with two or
more alternating bands of excitation and inhibition (Linsker 1986b).

To increase the resemblance of layer G to the visual cortex, Linsker (1986c) added
lateral connections between cells in the layer. To further simplify the calculations he
suggested that rather than calculating weight values directly from the update equations
(i.e. equation (17) modified to include lateral connections), a ‘Hebb-optimal’ configuration
of orientation preferences could be calculated, by first assuming fully developed oriented
receptive fields at each cortical location and by defining a lateral interaction function
QG(θx, θx ′ , x − x′) where θx and θ ′

x are the orientation preferences at locationsx and
x′. The ‘Hebb-optimal’ configuration was then found by minimizing an energy termE,
defined as

E = −
∑

x

∑
x′

ρ(|x − x′|)QG(θx, θ
′
x, x − x′) (18)

where the summation is taken over the entire lattice of cortical points andρ(|x − x′|)
is a decreasing function (e.g. a Gaussian) of the separation of each pair of points in the
summation. Starting with an initially random assignment of orientation preferences to each
lattice point, a configuration giving a minimum (not necessarily global) value ofE was
computed by simulated annealing. Linsker argued that configurations arrived at by this
process would have similar characteristics to those produced by the more straightforward
(but computationally more demanding) process of finding solutions to a modified equation
(17). The resulting orientation maps had many of the properties of real orientation maps,
including singularities and periodically spaced iso-orientation bands.

Linsker’s lateral interaction functionQG is comparable with Swindale’s lateral
interaction function,wz, in its effects, but with an important difference:wz is a function
only of the separation between two interacting orientation columns, whereasQG is a more
complex function which depends upon the absolute orientation of the two points in question,
as well as their separation. This means that two orientations which point towards each
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other on the cortex will interact differently from two orientations lying side by side. This
is plausible, because given oriented patterns of activation, two orientation detectors a short
distance apart which point towards each other will tend to be more highly correlated in
their activity patterns than will two detectors which lie side by side. Because of this, iso-
orientation domains for vertical orientations tend to be elongated in a vertical direction on
the cortical surface while, conversely, iso-orientation domains for horizontal preferences
tend to run in a horizontal direction. This interaction can be demonstrated quantitatively by
computing a histogram, over all points on the cortical surface, of the difference between the
orientation preference at each point, and the orientation of the associated orientation gradient
vector†. When this is done (figure 15(d) in Erwin et al 1995) Linsker’s orientation maps
show, as expected, a strong bias towards orthogonal differences. Real orientation maps
(Obermayeret al 1992, Obermayer and Blasdel 1993) show no such bias, the histogram
being essentially flat (figure 15(a) in Erwin et al 1995). Data from the cat (Swindaleet al
1987) and the tree shrew (Humphreyet al 1980) also suggest the lack of a strong interaction
of this kind in these species.

This disagreement with experiment suggests that Linsker’sQG may not be an accurate
description of the types of lateral interactions that determine the spatial layout of orientation
preference in the cortex. One reason for this may be that Linsker assumed an essentially
perfect spatial topography in the projections between layers. The situation in the developing
cortex is more complex since many receptive fields are present within each column of
interacting orientations and these fields are not all in the same place‡. Because of this,
neurons in columns that are less than 750µm apart (the distances over which lateral
interactions are likely to occur) and with similar orientation preferences, will often have
receptive fields that lie side by side as well as others that are coaxially aligned. This suggests
that a spatially averagedQG (Qiso in Linsker (1986c)) may be the more correct interaction
function (similar to Swindale’swz). But the possibility remains thatQ (or wz) may not be
exactly isotropic and it will be of interest to continue to examine experimental orientation
data carefully for even a hint of a correlation between orientation and orientation gradient
angles.

Although his model is unrealistic in some respects, Linsker (1986a) pointed out that it
is not meant to be a literally accurate description of the visual pathways. With respect to the
issues associated with visual cortical development, it is valuable in showing that Hebbian
mechanisms can, under certain conditions, lead to the development of oriented receptive
fields, in the absence of oriented patterns of retinal input. This may be an important clue to
explaining how orientation selectivity can develop in the absence of visually evoked activity
in the retina, if spontaneously occurring retinal activity lacks appropriately oriented structure.
Another advantage is that the model is simple enough to allow an elegant mathematical
analysis in which it can be shown that the receptive fields which develop in the different
layers (primarily the third layer was analysed) are eigenfunctions of the covariance matrix
(the Q functions) of the preceding layer (MacKay and Miller 1990a, b). For the third
layer, conditions exist in which these eigenfunctions are the 1s, 2p and 2s operators of
quantum mechanics.

† The orientation gradient is a vector which is orthogonal to the direction of elongation of the iso-orientation
domains (defined in the limiting case of a small range of orientations centred on the point in question). The vector
has zero magnitude at saddle points, is infinite in singularities and finite elsewhere.
‡ Two contributions to this are receptive field scatter and the probability that the arrangements of ON and OFF
subunits (sometimes referred to as the spatial phase) in the receptive fields of simple cells in neighbouring columns
may differ.
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7. Miller’s models for ocular dominance and orientation

7.1. Ocular dominance columns

Miller et al (1989) formulated a model describing how spatially correlated neural activity
in the two layers of the LGN might lead, in the presence of Hebbian synaptic modification
rules, to the segregation of inputs in the cortex into periodically alternating ocular dominance
stripes. As in Linsker’s model, a pre-existing spatial topography was assumed to exist
between the input layers and the cortex. Inputs from a locationα in the LGN were assumed
to make contact with cortical neurons centred on a locationx in the cortex, and spread over
a surrounding region, described by a fixed arborization functionA(x − α). (For notational
convenience it was assumed that any positionα in the LGN maps directly to an equal
position x in the cortex, so that LGN and cortical coordinates are interchangeable). The
arborization function was usually 1 over a small square region and zero elsewhere, although
in subsequent analyses (Miller and Stryker 1990, Miller 1990a) this restriction was relaxed.
Like Linsker, Miller et al simplified the calculations by assuming that synaptic weight
changes were slow compared with the rate of presentation of input patterns to the network,
so that the time-averaged statistics of the patterns would be the primary determinants of
weight changes. The statistical structure of these inputs was described by four radially
symmetric functions,CLL , CRR, CLR andCRL (similar to Linsker’sQ functions) specifying
how the correlation in neural firing rates varies with lateral separation in the LGN. The
strength of the connection from the two eyes, from a positionα in the LGN, to a position
x in the cortex at timet was given by two functions,SL(x, α, t) and SR(x, α, t). Lateral
interactions in the cortex were described by a functionI (x) analogous to that used by von der
Malsburg. The contribution of a synapseS(x ′, α′) to the correlation value associated with
a second synapseS(x, α) was assumed to be proportional to the product of the correlation
value associated with the separation between the cells of origin in the LGN, i.e.C(α−α′), the
strength of the synapse itself, i.e.S(x ′, α′), and the value of the lateral interaction function
for separation of the synapses in the cortex, i.e.I (x−x ′). This led to the following equation
for the change of synaptic strength with time:

dSL(x, α, t)/dt = λA(x − α)
∑
γ,β

I (x − y)
[
CLL (α − β)SL(γ, β, t)

+CLR(α − β)SR(γ, β, t)
]

(19)

with a corresponding equation for dSR(x, α, t)/dt obtained by interchanging L and R. A
multistep normalization procedure was also used, in which the sum of synaptic strengths
at each cortical location was kept constant. This was done by subtracting from the
weights, rather than dividing them (the method used by von der Malsburg). This difference
is important because it has been shown that, if divisive normalization is used instead,
segregation will not occur in the presence of positive correlations between the two eyes
(Miller et al 1989, Miller 1990a, b, Miller and Mackay 1994, Goodhill and Barrow 1994).
The total synaptic strength of each geniculate afferent was usually kept constant†, although
it was found that this constraint was only necessary if the cortical interaction function was
purely excitatory (i.e. no intermediate-range inhibition). The reasons for this are discussed
in Miller (1990a, b). In addition, separate limits were put on the maximum and minimum
synaptic strengths possible in the network.

† The reason for doing this (in addition to normalizing the sum of the inputs to each cortical neuron) is to prevent
some axons from disappearing entirely during development (i.e. all the weights go to zero). While such behaviour
may seem undesirable, it may not be unrealistic as cell death is a frequent occurrence in the pre- and postnatal
development of the visual system.
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Miller examined the behaviour of this system by mathematical analysis and computer
simulation. For the most part, the within-eye correlationsCLL andCRR were assumed to be
positive Gaussian functions, while the between-eye correlationsCLR andCRL were assumed
to be either zero or negative. The cortical interaction function was usually assumed to be
a difference of Gaussians. Under these conditions, two separate processes occurred:

(i) cortical receptive fields, which were initially binocular and equal in size to the arbor
function, gradually became smaller and monocular;

(ii) individual afferent arbors also became smaller and frequently broke up into patches,
confined to neighbouring ocular dominance stripes.

As a result of these two changes, a striped, periodic pattern of ocular dominance developed
on the cortical surface.

The simulations and analysis (Milleret al 1989 Miller and Stryker 1990, Miller 1990a,
1992a, 1995) allowed study of the effect of different arbor widths, different correlation
functions and different cortical interaction functions. When the cortical interaction function
contained both short-range excitatory and long-range inhibitory components, the spacing of
the ocular dominance stripes (and of the patches within individual geniculate arbors) was
determined by the shape of the cortical interaction functionI (x), i.e. by the position of the
peak in its Fourier transform (analogous to the way in which periodicity can be predicted
from wn in Swindale’s model) and not by the input correlations. Changing the widths of
the input correlations mainly affected the receptive field sizes and the monocularity of the
cortex: a narrower within-eye correlation function resulted in a less monocular cortex (i.e.
more binocular cells at the borders of the stripes) and smaller receptive field sizes. When the
intracortical interaction function was purely excitatory, then segregation occurred, provided
that a constraint maintaining the total strength of individual axonal arbors was applied. In
this case, the width of the individual ocular dominance stripes was about equal to the arbor
size. It is easy to see that a constraint on total arbor strength is very similar to the within-eye
lateral inhibitory effects postulated in Swindale’s model because increasing the strength of
synapses in one location in an arbor will necessarily lead to a decrease in the strengths of
synapses further away andvice versa. However, in Swindale’s model this is implemented
as a tendency, rather than a rigid constraint.

7.2. Orientation columns

Most neural net models assume the presence of spatial correlations in the simplest possible
model retina, in which only one type of input is present at each retinal location. However,
it is well known that the retina has two major subdivisions: cells which respond to light
increments, or positive contrasts (ON cells) and cells which respond to light decrements,
or negative contrasts (OFF cells). It is also known that one cause of orientation selectivity
in simple cells in the visual cortex is a receptive field organization in which one or more
regions of ON responsiveness alternate with regions of OFF responsiveness (Hubel and
Wiesel 1962). The preferred orientation of the cell can be predicted from the orientation
of the line (or lines), which best separates the regions. The alternation of ON and OFF
regions is reminiscent of ocular dominance segregation (although it is on a much smaller
scale and occurs within the receptive field rather than in the projection pattern of the LGN
afferents). Miller (1992b, 1994) therefore examined the possibility that his model for ocular
dominance segregation might be able to explain the development of orientation selectivity
and its accompanying cortical topography, as the result of competitive interactions between
ON and OFF inputs. In this case, what the model has to produce is an alternation of inputs
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within individual receptive fields, rather than receptive fields which are entirely ON or OFF
dominated (as in the analogous case of the ocular dominance model). Miller showed that
this can happen, provided that the input correlation functions change sign within a distance
smaller than the arbor function. For his simulations of orientation column development,
therefore, Miller used his ocular dominance column equation (19), replacing L and R
with ON and OFF respectively. Instead of Gaussian correlation functions, a difference of
Gaussians was used, an upright function (positive near the origin and negative further away)
for ON–ON and OFF–OFF correlations and an inverted function (negative near the origin
and positive further away) for ON–OFF and OFF–ON interactions. A slightly different arbor
function (circular, rather than square) was also used. Normalization and other procedures
used in the computations were similar to those used for the ocular dominance model.

This model performs well in many respects: individual receptive fields resemble those of
simple cells, inasmuch as they are divided into two (or occasionally more) regions of ON and
OFF responsiveness. From these, an orientation preference, a preferred spatial frequency,
and a spatial phase, which reflects the relative positions of ON and OFF regions within the
overall receptive field, can be calculated. Orientation preferences change continuously over
the surface of the cortex, singularities are present and individual iso-orientation domains are
elongated and morphologically similar to those observed in the monkey and cat (cf figure 15
in Miller (1994) and figure 14 in Erwinet al (1995)). In addition, the model predicts a
continuous variation in spatial phase of the receptive field across the surface of the cortex
and, for some parameter regimes, variations in the overall magnitude of ON versus OFF
responses within receptive fields. There is a small amount of experimental evidence for the
latter prediction: variations in ON and OFF responsiveness have been found in the mink
(McConnell and LeVay 1984) and the ferret (Zahs and Stryker 1988) although not so far
in cats or monkeys. Evidence for continuous variations in the spatial phase of simple cells
is so far lacking; there is some evidence that adjacent pairs of simple cells are often in
antiphase or quadrature (90◦) phase (Liuet al 1992), although this does not rule out an
additional continuous variation.

Miller’s orientation columns are unrealistic in one important respect: although the
model produces a well-developed ON–OFF periodicity within receptive fields and periodic
variations in ON versus OFF responsiveness across the surface of the cortex, periodicity of
orientation preference is essentially absent. This is shown by the fact that power spectra
of the orientation maps (figure 15 in Miller (1994)) have low-pass rather than band-pass
characteristics. Periodicity in real orientation maps is such a prominent characteristic that
this would seem to invalidate the model’s application to spatial organization in the cortex
without further modification. In some, though not all, parameter regimes, the model, like
Linsker’s, produces a correlation between orientation and orientation gradient vectors. When
this happens, the orientations tend to point in the same direction as the gradient vector
(figure 15(c) in Erwin et al (1995)) rather than orthogonally as in Linsker’s model.

Erwin and Miller (1995) have recently extended Miller’s equations to include both ocular
dominance and ON–OFF interactions (i.e. four separate types of synapse and associated
correlation functions). Parameter values were found which permitted joint development of
ocular dominance and orientation maps, although the orientation map was still aperiodic.

7.3. Biological interpretation of Miller’s models

Miller intended to make his models ‘biologically realistic’ by specifying only parameters
corresponding to measurable entities. Thus, the retinal correlation functions and the cortical
interaction function are all, in principle, measurable, while other ingredients—the Hebb
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synapses and the processes underlying the normalization of arbor strengths and input
strengths—might be demonstrated experimentally to correspond with those used in the
model. Other details seem less realistic: for example, the models assume a precise and
fixed retinal topography on the cortical surface, whereas it seems probable that, at this
stage, topography is not fixed and might be rather imprecise. The arbor function also seems
somewhat unbiological, since it simply constrains axons not to grow further than a certain
distance from a predefined and fixed retinotopic position on the cortex. It would be more
natural if this constraint, or something like it, emerged from activity-dependent interactions
producing and maintaining retinotopy, as well as some form of non-rigid constraint on the
total number of synapses in the arbor. One reason for not applying a fixed constraint of
this kind is that the density of synapses on geniculate axons probably increases substantially
during the early stages of visual cortex development. Another is that monocular deprivation
reduces the number of synapses on deprived arbors and so it can only be simulated by
relaxing the constraint on total arbor strength. This comes uncomfortably close to assuming
what one is trying to prove.

In his model of ocular dominance, Miller assumed zero or negative correlations between
the eyes, although, in cats, positive correlations between the eyes are more likely to
be present than not since ocular dominance columns develop while the eyes are open.
Segregation in Miller’s model can be disrupted by the presence of such correlations
(Dayan and Goodhill 1992, Goodhill 1992), although this is less likely when subtractive
normalization procedures are used. Finally, the periodicity of the columns in Miller’s model
is determined by fixed parameters such as the lateral interaction function and the arbor size;
therefore, the period of the columns should be unaffected by changes in the visual input.
This is inconsistent with evidence showing that strabismus in the cat (Löwel 1994) and
monocular deprivation produced by severely defocusing one eye in infant monkeys (Roe
et al 1995) both cause an increase in the spacing of ocular dominance patches. These
results imply that ocular dominance column periodicity is not determined solely by fixed
intracortical interactions, but by parameters which depend upon the correlation structure of
retinal activity. The models discussed in the following sections are able to accommodate
such findings.

8. Applications of Kohonen’s self-organizing feature map (SOFM) algorithm

8.1. Goodhill’s model for ocular dominance and retinotopy

The preceding discussion has suggested that it would be of interest to model the simultaneous
development of retinotopy and ocular dominance segregation. Much experimental evidence
(see e.g. Constantine-Paton and Law (1978), Udin and Fawcett (1988)) also suggests that
ocular dominance stripe formation is simply a consequence of other mechanisms whose
primary function is to refine the retinotopic map. Clearly, a Hebbian mechanism ought to
be capable of coping with both problems and, in a recent paper, Goodhill (1993) has shown
how a competitive Hebbian learning rule, first proposed by Kohonen (1982, 1988), may do
this.

In Goodhill’s implementation, two retinas project to a single layer of cortical units.
Retinal inputs were modelled as random dot patterns with short-range spatial correlations
introduced by convolution with a Gaussian blurring function with a standard deviation of
σr. In this respect, the inputs are the same as those postulated by Miller and those present in
Linsker’s B layer. Goodhill also introduced positive between-eye correlations, since these
are likely to be present whenever ocular dominance stripes form while the two eyes are



202 N V Swindale

open (and strabismus is absent). This was done by replacing a proportionh of each retina’s
activity with the same proportion of the activity in the other retina. Thus, ifh = 0 the inputs
are uncorrelated (a possible model for strabismus) and ifh = 0.5 the inputs are identical
(which presumably never happens). Each point in both retinas projected to the whole of
the cortex, i.e. no arbor function was specified, but connection strengths were biased to
simulate a rough initial topography. This was done by calculating the initial weight values
so that the connections between points in cortex and retina had strengths chosen from a
range whose centre value decreased linearly with the topographic distance between the two
points. (Initial receptive fields, and afferent arbors, are thus noisy cones truncated by the
edges of the arrays.) Each cortical unitc had an outputχ , given by the linear sum of its
inputs times the weight values

χc =
∑

r

wcrar (20)

where the summation is overr, i.e. all the inputs from left and right retinas, to pointc in the
cortex. Following calculation ofχc for all points in the cortex, the single cortical location
g, for which χc was largest was found and the weight values for this point and surrounding
ones were changed according to the following rule

1wcr = αars(c, g) (21)

where α determines the rate of development, ands(c, g) is a Gaussian function of the
distance between pointsc and g on the cortical surface, often referred to as the cortical

Figure 11. Combined formation of a retinotopic map and ocular dominance columns produced
by the high-dimensional Kohonen learning rule (Goodhill 1993). Inputs to the network come
from two 16× 16 arrays of units, corresponding to the two eyes. These have locally positive
within-eye correlations in activity, together with smaller positive correlations between the two
eyes. The diagram shows a 32× 32 array of cortical units: each unit is represented by a
box which is white if most of the inputs come from one eye, and black if most of the inputs
come from the other eye. Within each box is a small black or white dot: the position of
the dot within the box indicates the position of the receptive field of that cortical unit. The
existence of an overall retinal topography is shown by the fact that the position of the dot
within each box corresponds with the position of the box within the cortex. Although they are
not visually detectable, discontinuous changes in retinal position occur at the boundaries of the
ocular dominance stripes, as illustrated in figure 4. (Reprinted by permission of Springer-Verlag
from Goodhill (1993).)
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neighbourhood function. This learning rule, which is the essence of Kohonen’s (1982, 1988)
original proposal, will make unitg even more responsive to the stimulus in question than
it already is; in addition, points in the neighbourhood ofg will tend to become responsive
to similar stimuli, i.e. their weight vectors will tend to move in the same direction (in
weight space) asg’s weight vector. One problem with this rule is that some units in the
cortex may be initially unresponsive to stimuli (as an accidental result of the initial, random,
assignment of weight values) and may never win out over other units. To avoid this problem,
the response of each unit is divided by the number of times it has ‘won’ the competition, a
technique which is sometimes referred to as a ‘conscience’ mechanism, but which can also
be regarded as a form of stimulus adaptation.

Following each learning step (i.e. the presentation of a stimulus pattern and updating of
the weight values) synaptic strengths were subjected to a subtractive normalizing process,
similar to that used by Milleret al (1989). The goal of this is to ensure that the sum
of the inputs to each cortical unit equals a constant value,Nc. It involves the following
set of calculations: for each cortical unitc, calculatetc = (

∑
r wcr − Nc)/nc, i.e. the

difference between the mean value of the non-zero inputs to the unit (nc in number) and
the desired sum,Nc; next, subtracttc from each weight valuewcr , truncating the weight
values at zero ifwcr − tc is negative. If truncation has occurred the sum is still not equal to
Nc, therefore a further divisive normalization is applied by multiplying eachwcr value by
Nc/

∑
r wcr . Once these steps had been completed, the sum of the weights for each retinal

unit was normalized by multiplying eachwcr value byNr/
∑

c wcr whereNr is the desired
net retinal weight. (Note that this final procedure means that the normalization of input
weights to each cortical unit is no longer exact). Once normalization has been completed,
another stimulus pattern is presented to the network and learning continues, typically for
100 000–350 000 iterations†, when a stable set of receptive fields has emerged.

Development in this model can be followed by calculating, for each cortical unit, an
ocular dominance value (i.e. the relative net strength of left- and right-eye inputs) and
the ‘centre-of-gravity’ of each cortical unit’s weight values in retinal coordinates, i.e. its
receptive field location. At the start of development, ocular dominance values are binocular
(with small random variations in ocularity), receptive fields are large and topography is
imprecise. During development, receptive fields become increasingly monocular and a
striped pattern of ocular dominance emerges (figure 11). At the same time, receptive fields
become smaller, and topography becomes more regular. Correspondingly, the retinal arbors
refine and occupy smaller regions of cortex (although Goodhill did not examine the shape
of these explicitly).

It is of interest to examine the final pattern of retinal topography, once the cortex has
divided itself up into stripes connected with either the left or the right eye. Each eye
now innervates only half of the surface of the cortex: if each set of stripes contains a
complete map of the visual field, how is this map split up, and what is the relation between
the two interdigitating maps? As one moves across a stripe, receptive field positions move
smoothly across a corresponding region in the retina connected to that stripe. As one crosses
to the adjacent stripe, field positions (now in the other eye) shift backward to a position
corresponding to the field positions seen in the centre of the first stripe. This is similar to

† As a practical point it should be noted that competitive Hebbian models generally require very large numbers
of iterations (i.e. stimulus presentations) before converging to a stable state. In contrast, the models of von der
Malsburg, Swindale, Linsker and Miller usually converge acceptably in a few hundred iterations. As discussed later,
this difference (practical considerations aside) is probably a non-trivial consequence of the postulated developmental
mechanisms. It may also be of interest to note that, if ocular dominance columns develop over a period of about
200 hours (Swindale 1988) the rate of stimulus presentation in Goodhill’s model is about one every two seconds.
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the shifts in field positions at ocular dominance borders observed experimentally (figure 4)
in layer IVc of the macaque monkey. It is possible to visualize this arrangement by ‘back-
projecting’ the cortex into retinal coordinates, representing the retinas as parallel sheets (or,
if only one retinal dimension is considered, lines). The cortex can then be visualized as
‘zig-zagging’ back and forth between the two sheets, efficiently connecting up all points in
both retinas (figure 13). This image will be helpful in understanding the behaviour of the
elastic net and dimension-reduction models discussed in the following sections.

In exploring the effect of different parameter values on the behaviour of the model,
Goodhill noted that decreasing the correlation between the two eyes (i.e. setting the value
of his parameterh to zero), as would be caused by a strabismus, caused an increase in the
spacing of the ocular dominance stripes. This prediction, which is one of only a few made
in advance of experimental findings in this field, has been confirmed (Löwel 1994, Goodhill
and L̈owel 1995). The experimental observation is important because it confirms the general
notion underlying most of the models discussed here, that the cortex is a self-organizing
system in which the exact details of column shape and spacing are determined dynamically
during development rather than by hard-wired and genetically determined mechanisms. The
apparent increase in the spacing of ocular dominance stripes in monkeys made amblyopic
by severe anisometropia (Roeet al 1995) may have a related explanation: for this, the
effect of making one of the two eyes’ correlation functions very broad (i.e. increasing its
σr) ought to be explored.

8.2. Biological implications of Goodhill’s model

The significant ingredients of Goodhill’s model are

(i) its use of Kohonen’s competitive learning rule;
(ii) the assumption of positive correlations between the two eyes;
(iii) the use of a subtractive normalization rule.

With these it is able to explain the simultaneous development of retinotopy and ocular
dominance segregation under the influence of correlated patterns of retinal activity, as a
considerable amount of experimental evidence would now seem to require. It appears to
describe the formation of retinal topography within ocular dominance stripes correctly and it
can account for the effects of strabismus on stripe width. It may be possible to accommodate
other phenomena within the scope of the model, although this has not yet been explored†.
But how plausible are the three ingredients which lead to these successes?

Earlier models (see e.g. von der Malsburg and Willshaw (1976), Milleret al (1989))
usually assumed zero or negative correlations between the two eyes. Yet positive correlations
seem certain to exist, given that strabismus would be unlikely to have any effect on ocular
dominance column development, were it not that correlations are normally caused by the
correct alignment of the two eyes. Goodhill’s model shows that segregation can occur in the
presence of such correlations, but he reports that the model only works if subtractive, rather
than divisive, normalization is used as a mechanism for regulating the sum of synaptic inputs
to each cortical neuron. Although theoretical analyses of different kinds of normalization
rule (Miller and MacKay 1994, Goodhill and Barrow 1994) provide insights into why this
is so, very little is known about what cellular mechanisms might give rise to either type of
mechanism. More experimental data about how cells regulate their inputs are needed; in
addition, further clues might be obtained by modelling the process of synaptic regulation at

† As in Miller’s model, explaining monocular deprivation requires relaxation of the constraint keeping the total
weight of each retinal input constant.
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a subcellular level, to see if there are different types of biochemical regulatory mechanisms
which produce subtractive, divisive or other types of regulation.

The learning rule used by Goodhill differs from those used in the Hebbian models
described so far (i.e. von der Malsburg, Miller, Linsker) in which the rate of change at all
synapses is proportional to the product of the pre- and postsynaptic activities. Here, the rate
of change is proportional to the level of presynaptic activityar , but is conditional on the
synapse in question being close to that region of cortex which is responding most strongly
to the stimulus. This is usually referred to ascompetitive Hebbian learning†, or sometimes
as a ‘winner take all’ (WTA) mechanism and is a technique first introduced by Kohonen
(1982). In this context, the term ‘competitive’ refers to the (hypothetical) process by which
the most responsive region of cortex is selected from among those responding less strongly.
Its use should be distinguished from other uses of the term ‘competitive’, e.g. to describe
interactions where strengthening one group of synapses leads to a weakening of others.

The process of choosing the most responsive region and modifying connections only in
its vicinity is, of course, highly nonlinear, and does not lend itself easily to mathematical
analysis. Furthermore, although competitive Hebbian learning works well in a variety of
neural net applications, it does not at first sight seem to be something that is likely to
occur naturally in real brains. Why would connections in the cortex not be capable of
being modified simultaneously in many different places? In fact, there are reasons why the
cortex might behave in this way. First, if von der Malsburg’s Mexican hat connectivity
scheme is present in the cortex (i.e. short-range excitatory and mid-to-long-range inhibitory
connections) activity will tend to occur in localized small patches (Kohonen 1982). Second,
learning might be very rapid and contingent on the occurrence of strongly excitatory stimuli,
whose simultaneous occurrence would be less likely if the timescale on which modifications
occur is short. This type of development might be characterized as quantal, with each
event consisting of the brief modification of connections within a small region of tissue a
few hundred microns in diameter, contingent on activity within the region crossing some
threshold level. Competitive Hebbian learning can therefore be distinguished from the
type of learning which occurs in Linsker’s and Miller’s models. In the latter case synaptic
modifications are continuous and slow, are governed in a linear fashion by the time-averaged
statistics of the neural inputs, and direct interactions between synapses only occur when they
are on the same cell or belong to the same axon.

Some physiological evidence appears to point towards mechanisms similar to those
postulated by competitive Hebbian models. For example, in infant rat visual cortex it has
been observed that when a connection between an afferent and a postsynaptic neuron is
strengthened by the correlated stimulation of both cells, the connections from a nearby,
but unstimulated afferent become strengthened as well (Kosselet al 1990). A similar
spatial spread of synaptic strengthening has been observed in the hippocampus (Bonhoeffer
et al 1989). This suggests that synaptic potentiation is accompanied by a signal which
travels through tissue and potentiates nearby synapses. Possible mechanisms for the spread
include glial depolarization, release of nitric oxide, arachidonic acid, carbon monoxide or
hydrogen peroxide (Gallyet al 1990, Dawson and Snyder 1994, Montague and Sejnowski
1994, Schuman and Madison 1994, Dawson and Dawson 1995) or the diffusion of molecules
between intercellularly coupled neurons (Peinadoet al 1993). Other good candidates include
members of the neurotrophin family, which are known to be released from dendrites in
response to neural activity and to play a role in regulating developmental plasticity (Thoenen

† Strictly speaking this type of learning is non-Hebbian because, for at least some of the synapses involved, the
strengthening that occurs is independent of the response of the postsynaptic neuron
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1995, Cabelliet al 1995). To be consistent with a Kohonen-type mechanism, release of
this substance (or substances) would have to be an all-or-none event, with a relatively
high threshold. It would not be surprising if other substances which depressed synaptic
modifiability were released as well: these would be expected to act more slowly and diffuse
over longer distances. Kohonen (1993) has also proposed a physiological interpretation of
competitive Hebbian learning in terms of the release of diffusible chemical agents.

8.3. Other high-dimensional competitive Hebbian models

Obermayeret al (1990) applied Kohonen’s SOFM algorithm to the simultaneous formation
of retinotopy and orientation columns, and subsequently to the simultaneous formation of
retinotopy, ocular dominance and orientation preference (Obermayeret al 1992b). With
the exception of the competitive aspect of the Hebbian learning rule used and the use of
a larger retina (allowing the addition of retinal position to the input stimulus space), the
model was also similar to that of von der Malsburg (1973). A single, two-dimensional
layer of randomly positioned input units projected to a two-dimensional cortex. Oriented
patterns of stimulus activity in the input layer were defined by Gaussian ellipses with specific
positions and orientations in the input array chosen from a uniform probability distribution.
Connection strengths between the two layers were changed according to (20) and (21), with
the difference that Obermayeret al normalized the sum of the squares of the weight values
to each cortical unit multiplicatively. The size of the cortical neighbourhood function was
also reduced over time by a factor of about 100 as stimulus specificity increased. The
resulting pattern of orientation preference was similar to that found in the monkey and cat,
with irregularly distributed half-rotation singularities and periodically spaced iso-orientation
domains whose direction of elongation was independent of the orientation represented within
them. Results overall were similar to those obtained with a low-dimensional version of the
Kohonen algorithm (Obermayeret al 1991, 1992b). This algorithm is described in more
detail in the following section.

9. Dimension-reduction models for cortical development

An important and successful class of models has stemmed from the idea that the visual
cortex is a dimension-reducing map, i.e. that each point on its two-dimensional surface can
be mapped to a corresponding position in a higher-dimensional stimulus space (Kohonen
1982, 1988, Mitchison and Durbin 1986, Durbin and Willshaw 1987, Durbin and Mitchison
1990)†. This can be visualized in abstract terms by imagining a three- (or higher-)
dimensional stimulus space, each position in which corresponds to a set of potential
receptive field properties (for example, receptive field position (two dimensions), preferred
orientation (two dimensions if orientation is represented as a vector) and eye preference
(one dimension)). The cortex can then be ‘back-projected’ into this space in such a way
that each position on its two-dimensional surface occupies the position in stimulus space
corresponding to its receptive field (figure 12). The way in which the cortex is folded inside
and fills stimulus space then defines the overall map of receptive field properties. This map
is of course more usually conceived of as a forward projection, i.e. as a mapping of some
stimulus dimension onto the surface of the cortex.

† Mitchison (personal communication) has pointed out that algorithms which assign points in the cortex to points
in a higher-dimensional space actually perform dimension expansion, rather than dimension reduction. Although
the term ‘dimension reduction’ is now in common use, the fact that it might sometimes be more correct to refer
to ‘dimension expansion’ should be borne in mind.
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Figure 12. An imaginary projection of the cortex into a stimulus space: the folded sheet is the
cortex, with points on the grid representing positions in cortical coordinates. The receptive field
properties of each point in the cortex determine the position of the point within the stimulus
space. A three-dimensional subset of this space is shown here: receptive field elevation and
azimuth, and preferred orientation. The low-dimensional Kohonen and elastic net algorithms
work by moving the positions of cortical points within a stimulus space of this kind, in such a
way that the folded sheet fills the space, and becomes locally smooth. (Taken from Swindale
1992.)

Although it was not couched in technical language, the idea that the organization of
columnar structures in the visual cortex might be a solution to this mapping problem, subject
to certain constraints, was also clearly expressed by Hubel and Wiesel (1974b, 1977). They
pointed out two important functional considerations which might help in explaining why
the cortex has the structure that it does. First, the fact that neurons with similar receptive
field properties occur close together in the cortex may help to minimize the total lengths
of axonal and dendritic connections, given that more connections are likely to be made
between neurons with similar properties than dissimilar ones. This would explain why the
map is, at least to some degree, locally continuous. Second, it is presumably an important
requirement that the cortex should fill stimulus space as completely and as uniformly as
possible. Were this not to happen, certain regions in stimulus space would fail to gain a
representation in the cortex and the animal might be blind or relatively insensitive to those
particular stimulus combinations. The consequences of these ideas are examined in more
detail below, in section 11.

These considerations suggest that the projection of visual cortex into stimulus space is
subject to two conflicting requirements:

(i) the cortical surface should pass through a representative selection of points in
stimulus space;

(ii) the area of the sheet should be kept a minimum, since this will ensure continuity, and
hence minimize wiring length.

An analogous problem is the travelling salesman problem (TSP), where the shortest route
connecting a set of cities must be found. The problem of minimizing the length of the
salesman’s one-dimensional tour of a set of cities, which occupy positions in a two-
dimensional space, is essentially the same, computationally, as minimizing the area of
a sheet which must visit each of a number of points in a three- (or higher-) dimensional
space.
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Although this problem is simple to state, the task of solving it is not easy: even
apparently trivial examples, involving as few as 30 cities, cannot be solved by simply trying
all the combinations in sequence and selecting the shortest†. Attention has therefore been
devoted to finding algorithms which give solutions which can be calculated in a practicably
short period of time and which, although not provably optimal, are probably close to the
best solution. Two such algorithms have been applied to the problem of visual cortex
organization, and will be discussed here: the first is based on the behaviour of a simulated
elastic net (Durbin and Willshaw 1987); the other is derived from the self-organizing feature
map (SOFM) algorithm proposed by Kohonen (1982) and described in the preceding section.
The interest of these models is two fold: first, given a suitably chosen stimulus space, the
maps calculated with them closely resemble those found in the visual cortex and, second,
strong formal similarities can be found between the behaviour of the algorithms and more
‘realistic’ neural net models, e.g. the competitive Hebbian mechanisms used by Obermayer
et al (1990) and Goodhill (1993).

9.1. Elastic net models

In this type of model, first proposed by Durbin and Willshaw (1987), the salesman’s tour
(or, analogously, the cortical map) is represented conceptually by a string of beads joined by
an elastic thread. For the two-dimensional cortical analogy one can think of a square two-
dimensional lattice of points, i.e. a net, connected by elastic. It is important to remember
that each lattice point corresponds to a single fixed position on the cortical surface; although
the separation of adjacent lattice points in stimulus space can vary, the closer they are in
stimulus space, the more similar are the receptive fields of the two corresponding points in
the cortex. In both the one- and the two-dimensional cases, the net has a certain energy,
which will be lower, the closer the beads or lattice points are to one another. The cities (or
analogously, points in stimulus space) exert attractive forces on the beads or lattice points,
which are thereby drawn closer to the cities. As the beads approach the cities, the distances
over which the attractive forces are exerted are made smaller and, eventually, each city (or
stimulus point) will capture a bead, provided the number of beads is initially chosen to be
greater than or equal to the number of cities.

The behaviour of this system can be described more formally as follows. Letyj be a
vector which describes the position of cortical pointj (or thej th bead) in stimulus space,
i.e. yj is the receptive field of pointj . Let the position of each stimulus (or city)i be the
vector xi and let the magnitude of the attractive force exerted by stimulusi on cortical
point j be proportional to the following Gaussian function of the distance between pointsi

andj :

wij = exp
(−|xi − yj |2/2K2

) /∑
p

exp
(−|xi − yp|2/2K2

)
. (22a)

K is a distance scaling parameter and the summation overp in the denominator is over
all the cortical units. Althoughwij is analogous to a force, it can also be interpreted as
the response of cortical unitj to stimulusi, assuming that receptive fields have a Gaussian
profile (often a good approximation), normalized by dividing by the sum of the responses
of all the cortical units to stimulusi (i.e. the term in the denominator). This normalization
is important to the operation of the algorithm because it ensures that stimuli which are
a long way from the cortex (equivalently, cities which are far away from tour points)

† The number of combinations is(N − 1)!/2. ForN = 30 this is approximately 1031 combinations.
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evoke responses which are as strong, on average, as those evoked by closer stimuli. As a
consequence, it can be guaranteed that each stimulus will gain a representation in the cortex
(i.e. the salesman’s tour will visit all the cities).

At each iteration of the model, theyj ’s are changed by an amount

1yj = α
∑

i

wij (xi − yj ) + βK
∑
k∈N

(yk − yj ) (22b)

whereα andβ are rate constants and the values ofk over which the summation in the second
term is taken are the nearest neighbours of pointj . The first summation term on the right-
hand side represents the net force exerted by all the stimuli on pointyj , while the second
term represents the elastic pull of adjacent points. As the iterations proceed, the value ofK

is slowly reduced, causing the elastic forces between neighbouring cortical points to become
weaker and the attractive effect of each stimulus to be increasingly local. Equivalently, the
receptive fields of the cortical units become more selective in their responses to different
stimuli. This has two effects: the receptive fields of the cortical units tend to become
more similar to those stimuli to which they are already most responsive, while the elastic
forces tend to make neighbouring cortical locations respond to similar stimuli. It will be
recognized that these behaviours are features of almost all the models discussed so far.

Goodhill and Willshaw (1990) applied this algorithm to the problem of forming a
retinotopic map from the two eyes onto the cortical surface. They studied a simplified
one-dimensional version of the problem, in which two one-dimensional retinas projected
to a one-dimensional cortex, as well as a more realistic implementation in which two
two-dimensional retinas projected onto a two-dimensional cortex. For the one-dimensional
case, the stimuli, which Goodhill and Willshaw identified with retinal neurons, formed two
parallel rows, one for each retina (figure 13). The neurons in each row were spaced a
distance 2d apart in a horizontal direction and the rows were a distance 2l apart in the
vertical direction (the physiological interpretation of vertical distance in this framework is
discussed below). Cortical points were initially positioned randomly between the two rows
with a small amount of systematic bias applied to the horizontal position components to
ensure a determinate orientation of the final retinotopic map. There were typically between
one and three times as many cortical points as retinal neurons.

Development in this model goes through a number of characteristic stages. Initially, the
cortex flattens out and lies equidistant between the two rows of retinal neurons with the ends
pulled in from the edges of the rows (figure 13(a)). This corresponds to the establishment
of an ordered retinal topography (with some distortion at the edges of the cortex) and the
presence of large binocular receptive fields. AsK is reduced (below a value of about 0.5l)
a critical stage is reached and periodic fluctuations in the vertical positions of the cortical
points start to develop (often nucleating from the ends or other positions along its length).
These grow rapidly (figure 13(b), (c)) and the cortex eventually approaches and connects
together all the points in the two retinas (figure 13(d)). Physiologically, this corresponds to
the formation of smaller, monocular, receptive fields, with the exception of a few binocular
points at ocular dominance borders. Geometrically, the path taken by the cortex through the
retinal units corresponds (approximately) to the shortest line connecting all the units in both
retinas. The frequency with which the path crosses from one retina to the other depends
upon the values ofl and d and it can be shown that the path length is a minimum when
the number of retinal cells per ocular dominance ‘stripe’ isn = 2l/d (Goodhill 1992).

In the two-dimensional version of the model, the cortex was represented by a sheet of
points, each of which interacts with its four nearest neighbours; the retinas are likewise
two-dimensional sheets of cells separated by a fixed vertical distance. Realistic-looking
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Figure 13. Illustration of the behaviour of the elastic net algorithm when applied to a one-
dimensional model of ocular dominance column formation. The ‘stimuli’ in the model are
represented as two rows of squares: each row corresponds to a single eye, although the squares
are not labelled in any way, except by their position. The ‘stimuli’ can also be thought of as
retinal units embedded in a space whose metric is inversely related to the correlation between
them. The cortex is represented as an elastically connected string of beads, which initially lies
midway between the two sets of stimuli. Initially (a) the elastic forces between the beads cause
the string to flatten and contract; the attractive forces exerted by the stimuli also cause the
string to lie midway between the two rows. As the distance over which the forces are exerted
is reduced (i.e. the value ofK in equation (22a)) instability develops and cortical points start
to move towards the stimuli ((b) and (c)). Finally (d), each stimulus has captured a cortical
point. The algorithm has also solved (approximately) the travelling salesman problem for the
set of stimuli, i.e. the beads connect them by approximately the shortest route. The line below
each panel shows ocular dominance as mapped onto the cortex. Note the resemblance between
the retinotopic arrangement in (d) and the probable arrangement in monkey cortex illustrated in
figure 4.

ocular dominance stripes are formed (figure 14(a)), the spacing of which depends upon the
separation of the two retinal layers: the larger the separation, the wider the stripes.

Durbin and Mitchison (1990) applied the same algorithm to the problem of mapping
orientation and retinotopic position onto the cortical surface, ignoring binocularity. They
defined a four-dimensional stimulus space, with coordinates (x, y, η, χ) where x and y

specified the centre of the receptive field in visual space andη andχ specified orientation
as a point on the circle defined byη = r cos(2θ), χ = r sin(2θ) where r is a constant,
and θ is the preferred orientation (the orientation angles are doubled to reflect the fact
that orientation preference is cyclic over the range 0–π ). Cortical units and stimuli were
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initially randomly positioned in stimulus space and iterations were continued until a stable
configuration was found. The resulting distribution of orientation preferences (figure 14(d))
exhibited many of the features found in monkey and cat visual cortex, including periodicity,
half-rotation singularities and periodic variations in the orientation gradient. An interesting
observation was that the retinotopic map contained variations in magnification factor which
were correlated with the variations in orientation gradient: specifically, in cortical regions
where orientation preferences changed rapidly, retinal positions changed slowly, andvice
versa.

Erwin et al (1995) combined the models of Durbin and Mitchison (1990) and Goodhill
and Willshaw (1990) into a five-dimensional feature space in which binocularity, retinotopic
position and orientation were all represented. The resulting output (obtained after 2× 106

iterations of equation (22b)) was highly realistic and, with an appropriate choice of
parametersl andr, successfully reproduced the known relations between ocular dominance
stripes and orientation columns, with orientation singularities located in the centres of
ocular dominance stripes and local orthogonality between orientation and ocular dominance
columns. This is another example of the type of correlation described in the previous
paragraph where a rapid change in one parameter as a function of cortical distance is
associated with a slow change in a different parameter. This relation is in fact a simple
consequence of dimension reduction. For example, if distance along a straight line is
measured byl and the line is projected onto a two-dimensional space(x, y) at different
angles, the gradients dx/dl and dy/dl will be inversely correlated.

The elastic net algorithm has been further analysed by Durbinet al (1989), Yuille
(1990), Yuille et al (1991) and Dayan (1993). These papers suggest ways of interpreting
distances in stimulus space in terms of correlations between input neurons and show how
the algorithm can be interpreted in terms of more conventional Hebbian models, such as
that of Miller et al (1989).

9.2. Low-dimensional self-organizing feature map (SOFM) models

Applications of Kohonen’s SOFM algorithm to visual cortex map formation have been
described above, in section 8, where they were characterized as competitive Hebbian
mechanisms. A slightly different version of Kohonen’s algorithm was applied to the problem
of visual cortex organization by Obermayeret al (1991, 1992a, b). As used by these authors,
the algorithm performs dimension reduction in much the same way as the elastic net method
and, like the latter, it has an essentially geometric interpretation, which can be described as
follows. A two-dimensional cortical sheet fills a stimulus space of equal or higher dimension
according to some initial configuration. Points in the stimulus space are chosen one at a
time (e.g. at random, or from a predefined fixed set) and for each stimulus the cortical
point which is nearest, i.e. responding most strongly, is found. This point is then moved
closer to the stimulus. Nearby cortical points are also moved a lesser distance towards the
stimulus, which tends to enforce continuity in the cortical representation. After presentation
of a sufficiently large number of stimuli, the cortical sheet becomes locally smooth and it
fills stimulus space in a manner determined by the initial configuration and the history and
probability distribution of stimulus presentation.

The main differences between the low- and high-dimensional implementations of the
algorithm are that, in the low-dimensional version, stimulus values such as retinotopic
position and orientation are directly encoded by the input vectors, e.g. receptive field
position,x, is encoded as an activity value,x, in a single input unit; in addition, the weight
values of the winning cortical unit and its neighbours (the weight values are simply the
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Figure 14. Simulations of cortical topography produced by the elastic net algorithm. (A) Ocular
dominance stripes formed when two circular retinas were mapped to an elliptical cortex: this
causes the stripes to run perpendicular to the long axis of the ellipse. (B) Monocularly deprived
ocular dominance stripes, simulated by reducing the value ofα (equation (22b)) for one of the
two retinas. (C) Combined formation of retinotopy and orientation columns: the figure shows
the projection of the cortex (whose surface is represented by an equally spaced array of grid
points) into retinotopic coordinates: thus, the further apart two points in the grid are, the more
distant are their receptive fields. The black squares represent the magnitude of the orientation
gradient at each cortical location. Notice that there is a strong inverse correlation between the
orientation gradient and the retinal magnification factor: in regions where cortical points are
far apart in retinotopic space the orientation gradient value is small, and vice versa. (D) The
corresponding map of orientation preference in the cortex. The strip on the left shows the colours
used to code orientations. (Parts (A) and (B) are reprinted from Goodhill and Willshaw (1994)
with permission from MIT Pressc© 1994 Massachusetts Institute of Technology; parts (C) and
(D) are reprinted from Durbin and Mitchison (1990) with permission fromNature c© 1990
Macmillan Magazines Limited.)
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position of the unit in stimulus space) are made more similar to the input vector, rather than
increased in value in the normal Hebbian way (and subject to normalization constraints).

Thus, for the low-dimensional case (cf equation (21) which is the high-dimensional
case) after the presentation of a stimulus vectorv, the cortical receptive fields (or weight
values)wj change by an amount

1wj = εh(j, j∗)(v − wj ) (23)

whereε is a rate constant,j∗ is the cortical point closest tov, andh(j, j∗) is a decreasing
function of the cortical distancer between pointsj andj ∗. For this, Obermayeret al (like
Goodhill (1993)) used a radially symmetric Gaussian functionh(r) = exp(−|r|2/2σ 2),
although for some simulationsh(r) was anisotropic, i.e. oval rather than circular.

Obermayeret al (1991, 1992a, b) applied this algorithm to a five-dimensional feature
space, with components (x, y, q cos(2φ), q sin(2φ), z). Parametersx and y correspond
to retinotopic position,q describes orientation selectivity (a value ofq = 0 indicates a
circularly symmetric receptive field),φ is preferred orientation andz is an ocular dominance
value. Stimuli were chosen with a uniform probability distribution,P(v), from the manifold

V = {
v|x, y ∈ [0, d], φ ∈ [0, π ], q < qpat, |z| < zpat

}
.

The size of the Gaussian neighbourhood function,σ , was gradually reduced during the
simulations.

Figure 15 shows the results from one such mapping obtained with this method†: the
experimental data on orientation and ocular dominance maps were reproduced in almost
every detail (e.g. those listed in table 1); in addition, a good agreement between the
shapes of the power spectra and the auto- and cross-correlation functions for real and
modelled results was found. As an expected general consequence of the dimension-reduction
approach, inverse correlations between local magnification factors along the different
stimulus dimensions were found. One example of this was that orientation selectivity
varied most rapidly in regions of constant ocular dominance. As a result, singularities
were concentrated in the middle of the stripes and the orientation gradient was maximum
along directions perpendicular to the stripes. In other words, there was a locally orthogonal
relationship between iso-orientation slabs and ocular dominance columns at stripe borders.
This latter relationship was investigated in more detail (Obermayeret al 1992, Obermayer
and Blasdel 1993) by extracting the local orientations of iso-orientation and iso-ocular
dominance domains‡. A plot of the difference angles in the modelled maps showed a bias
towards orthogonal values, similar to that observed in the data obtained from optical maps
in four adult monkeys. As with mappings obtained using the elastic net method (Durbin and
Mitchison 1990), retinotopic position varied most rapidly in regions of low rates of change
of orientation preference andvice versa. Elongating the neighbourhood function,h(r), had
the effect of making the iso-orientation domains run parallel to the direction of elongation.

Obermayeret al (1992a) carried out a statistical mechanical analysis of the behaviour
of the model, investigating the conditions (determined by the values ofd, qpat, zpat andσ )
under which stable patterns of fluctuating orientation and eye preference could be predicted
to emerge. The analysis, however, could only carried out in the regime in which spatially
fluctuating patterns of orientation and ocular dominance fail to emerge; thus, the biologically
interesting behaviours of the system had to be investigated by numerical simulation.

† Obtained after about 106 iterations of equation (23). This required about 30 hours of computation on a CM-2
connection machine (Obermayer, personal communication).
‡ These angles were calculated from the positions of the peaks in Fourier spectra obtained from numerous small
regions (masked with a narrow Gaussian) in the maps.
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Figure 15. Orientation and ocular dominance maps produced by the low-dimensional Kohonen
algorithm for dimension reduction. As in figure 3, the white lines indicate the boundaries of
ocular dominance stripes, and a similar colour scheme is used to code orientations. As in the
experimental data, singularities tend to lie in the centres of ocular dominance stripes and iso-
orientation domains intersect ocular dominance boundaries at right angles. (Figure provided by
K Obermayer; details of the model parameters are given in Blasdel and Obermayer (1994).)

9.3. Strengths and weaknesses of the dimension-reduction approach

The similarity of the maps generated by dimension-reduction models to real cortical maps is
impressive. This suggests that the constraints of continuity and completeness operating in the
models are similar to those operating during cortical development. Given the demonstration
that the cortex seems to come reasonably close to an optimal solution to this problem, and
assuming that all the near-optimal solutions look similar, then any model or algorithm which
solves this problem (which is essentially the travelling salesman problem) can be expected to
produce realistic cortical maps. Thus, in principle, the operation of a successful algorithm
in this context need not necessarily bear any relation to actual biological developmental
mechanisms†.

It is reasonable to ask, therefore, whether the models of Durbin and Mitchison (1990),
Goodhill and Willshaw (1990) and Obermayeret al (1991) can be considered to be models
of development, or whether they are best regarded simply as existence demonstrations.
The answer to this question is not entirely clear. Both algorithms have a rough biological
interpretation: e.g. the ‘forces’ attracting cortical points to stimuli are essentially Hebbian,
given that the net effect of Hebbian modification (in any model) is to make cells more
responsive to stimuli to which they already respond well. The cortical neighbourhood

† As an example of different mechanisms having a similar end result, local orthogonality between orientation and
ocular dominance columns in Swindale’s (1992) model results from an interaction (slowing the rate of emergence
of orientation selectivity in regions where the rate of growth of ocular dominance is high) which cannot be
straightforwardly derived from any of the behaviours of dimension reduction models, although the end result
appears to be similar.
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function can also be implemented biologically in various ways, e.g. by means of lateral
connections between cells or by the local spread of substances which modify synaptic
strengths. It is less clear how the geometrical construction of the low-dimensional stimulus
space, used in an identical fashion in both the elastic net and Kohonen approaches, might be
interpreted. Thus, the values ofd, qpat, zpat andσ are not straightforwardly derivable from
measurable quantities and, at present, are simply chosen to give the best-looking results. For
the case of ocular dominance and retinotopy, Goodhill and Willshaw (1990) proposed that
distances between individual units within and between the two layers could be identified
with a measure of the correlation in the activities of pairs of units. Thus, an increase in the
distance between the layers could be identified with a decrease in the correlation in the two
eyes’ activities. But a metric defined in this way does not necessarily produce a Euclidean
space: for example, it is not immediately clear how zero or negative correlations might be
represented. This problem is, of course, avoided in ‘high-dimensional’ models where neural
activities are represented explicitly in the input layer.

As an empirical matter, the question of how closely the intermediate and final stages of
development in the models resemble those of the real cortex deserves further examination,
as does the extent to which the models are able to replicate species differences, the effects of
manipulations such as monocular deprivation, and very non-uniform distributions of input
stimulus features. These questions have not been fully addressed yet, although Goodhill
and Willshaw (1994) were able to model the effects of monocular deprivation (figure 14(b))
and strabismus† and a case could probably be made that the later developmental stages of
the algorithms resemble normal development. A distinctive aspect of the algorithms’ initial
behaviour is a phenomenon referred to as ‘collapse’ (Kohonen 1982): receptive fields rapidly
become similar over the whole cortex and approximate to the centre of stimulus space. To
the extent that relatively large areas of the cortex may take on a similar preferred orientation
and receptive field position, this behaviour does not seem particularly realistic. Finally, the
predicted inverse correlation between the local magnification factors for orientation and
retinotopic position has yet to be confirmed. In cat area 17, preliminary evidence (Daset
al 1995) indicates a positive correlation, i.e. receptive field positions were found to change
more rapidly in regions of discontinuous orientation change. If this turns out to be true it
would undermine the generality of the ideas underlying dimension-reduction theories and
the suggestion that the cortex optimizes coverage.

10. Other models

10.1. The tea-trade model

This model, which was devised by von der Malsburg and Willshaw (1977), took its name
from an analogy with a hypothetical situation in which one might be able to decide on
the exact geographical origin of a particular blend of tea based only on a knowledge of
the relative proportions of the different individual tea types making up the final blend‡.
This would be possible if tea-blenders’ use of any particular tea decreased with increasing
distance of the source of the tea from the blending site. The application of this basic idea
to the problem of map formation went as follows: assume that in the retina there exist
sources, in various positions, of a number of different chemical markers which diffuse
laterally through the retina. These are taken up (i.e. blended) by individual ganglion cells

† Monocular deprivation was modelled by reducing the value ofα (equation (22b)) for the deprived eye and
strabismus was modelled by increasing the distance between the two sheets of retinal units.
‡ This is an extremely uninteresting problem, even for an English scientist.
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and transported to the target structure (i.e. optic tectum or visual cortex) where they cross
synapses and enter postsynaptic cells. The markers are then transported laterally (e.g. by
diffusion within dendrites) through cells in the postsynaptic layer. Synapses are increased
in strength and/or number based on a measure of how similar the blend of markers in the
presynaptic terminal is to the blend present in the postsynaptic element. The modification
rule tends to maximize the similarity between pre- and postsynaptic marker sets and can
account for the formation of topographic projections and a variety of experimental data
on retino-tectal mappings (Willshaw and von der Malsburg 1979). The model can also be
applied to the problem of ocular dominance stripe formation (von der Malsburg 1979) given
identical markers in the two eyes except for two unique to each eye.

The tea-trade model is unusual in that there is no explicit dependence upon neural
activity. This may be useful in situations where it can be shown that neural activity
is unnecessary for topographic map formation. The idea that ocular dominance column
formation relies entirely on a chemical difference between the two eyes is probably
not correct because projections from genetically identical eyes can segregate into stripes
(Fawcett and Willshaw 1982, Ideet al 1983). No application to orientation column
formation has been proposed.

Although the resemblance is not at first obvious, the tea-trade model behaves in a way
which is like that of the elastic net algorithm (Durbin and Willshaw 1987) and was the
inspiration for it. Thus, a given mixture of markers in a pre- or postsynaptic element can
be represented as a position in a space whose axes are the concentrations of the different
chemical markers. The synaptic modification rule has the effect of moving the positions of
the postsynaptic elements towards nearby presynaptic elements. The diffusion of markers
laterally through the postsynaptic sheet is analogous to the elastic forces in the net and has
the same effect of enforcing continuity in the postsynaptic sheet.

10.2. The diffusion-based model of Montague et al

The model of Montagueet al (1991), which is based on an earlier proposal by Gallyet al
(1990), postulates that the development of topographic projections in the visual cortex and
in other neural structures is determined by a mechanism in which synaptic strengths are
changed depending upon presynaptic activity and the concentration of a molecule which is
released in amounts proportional to the local postsynaptic activity and diffuses extracellularly
through tissue. If the concentration of the signal is high, active synapses are strengthened
and inactive ones weakened; if the concentration is low, active synapses are weakened
and inactive ones are left unchanged; at intermediate levels of the signal, strengths are left
unchanged. This mechanism has since been referred to as ‘volume learning’ (Montague and
Sejnowski 1994).

The function of this signalling molecule (or molecules) is similar to that of the locally
excitatory connections between cortical neurons assumed by most other models: it provides
a mechanism by which the strengthening of connections between one afferent and a
postsynaptic cell will be accompanied by the strengthening of connections from a second
afferent to the same, or nearby cells, if the firing of the first afferent is correlated with
the firing of the other. The two mechanisms are not entirely equivalent however: while
lateral neural connections usually integrate the postsynaptic response within some local
region in space and a fixed, short time interval, the diffusion mechanism integrates over
both space and time, with scales determined by the diffusion constant of the molecule and
the rates of its production and removal. The mechanism will therefore only be able to detect
input correlations at spatial and temporal scales which are similar to those imposed by the
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kinetics of the accompanying diffusive signal. Gallyet al (1990) suggested that the signal
might be a small, rapidly diffusing molecule, such as nitric oxide, which is released from
dendrites in response to neural activity and has been shown to gate synaptic plasticity in other
systems (Schuman and Madison 1994). Other candidate molecules include arachidonic acid,
carbon monoxide and hydrogen peroxide, as well as members of the neurotrophin family
(Thoenen 1995).

Montagueet al applied their model to the problems of barrel formation in rodent
somatosensory cortex and to ocular dominance column development. The simulations were
more realistic than any others discussed here and included the specification of individual
axonal and dendritic arbors within a three-dimensional neuropile. Axons could actively
grow through the neuropile, occupying neighbouring vacant sites by probabilistic sprouting.
To simulate ocular dominance column formation, a crude initial topography was assumed
and patterns of retinal activation were modelled as travelling waves of synchronous cell
firing, similar to those thought to be present prenatally. Whenever one retina was active
the other was silent. These waves caused a progressive refinement of topography as well
as the final emergence of a realistic pattern of ocular dominance stripes.

The volume learning hypothesis may turn out to be correct, given the evidence for
non-local (or ‘distributed’) Hebbian plasticity in both visual cortex (Kosselet al 1990) and
hippocampus (Bonhoefferet al 1989), and for the role of a variety of candidate extracellular
molecules in modulating long-term potentiation and depression (LTP and LTD). Evaluating
the simulation results is hard however: partly because of the large number of details which
had to be specified, the model has more free parameters than most and the influence of these
on the behaviour of the model and the periodicity of the ocular dominance stripes was not
examined. It remains to be seen whether the space and time constants of likely diffusing
molecules are in the same range as those which distinguish neural activity in the two eyes
and whether they can produce structures of the right size. A simplified implementation of
the model, together with a further examination of parameter dependence, would probably
be worthwhile.

10.3. Tanaka’s thermodynamic approach

The basic ingredients of Tanaka’s models (Tanaka 1989, 1990a, b, 1991a, b, 1995) are
similar to those in most non-competitive Hebbian models (e.g. von der Malsburg, Miller
and Linsker) and include spatially correlated activity in one or more input layers, lateral
intracortical interactions, Hebbian learning and input normalization. Tanaka’s mathematical
treatment of his learning equations is novel and complex, and draws heavily on an analogy
with the physics of systems, such as magnetic domain formation, which can be characterized
by a discrete state variable known as Potts spin. Tanaka justifies this analogy quite
rigorously by mathematical analysis (Tanaka 1990) of a system, inspired by the speculations
of Changeux and Danchin (1976), which assumes the presence of:

(i) a postsynaptic factor which is available in limited amounts and is essential for synaptic
stabilization;

(ii) a presynaptic stabilizing factor, transported anterogradely from the cell body;
(iii) a Hebbian modification rule which allows the weakening or destabilization of active

synapses in the presence of postsynaptic hyperpolarization, as well as the more normal
strengthening in the presence of depolarization.

Analysis of the resulting learning equation shows that in a stable equilibrium the synaptic
strengths tend to assume upper or lower limiting values (this is also true of the weight
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values in other models, such as Linsker’s). The resulting binary state variable is the Potts
spin of the system, and from it an associated temperature, which is related to the lifetime
of an average synapse, and Hamiltonian function (analogous to Linkser’s energy function
for orientation columns) can be derived. A standard Monte Carlo technique is used to
find configurations of the system for which the value of the associated Hamiltonian is a
minimum.

Tanaka modelled separately the formation of ocular dominance columns, orientation
columns and the barrel map in somatosensory cortex. All these models produce realistic
results. His model for ocular dominance (Tanaka 1989, 1991a, b), although derived
independently, is formally similar to that of Milleret al (1989), inasmuch as Tanaka’s
Hamiltonian for ocular dominance is the same as the right-hand side of Milleret al’s equation
for synaptic growth (19). One difference is that Milleret al did not assume the possibility
of spontaneous formation and removal of synapses. This means that Milleret al’s system
has a temperature of zero in Tanaka’s formulation. Tanaka’s model for orientation columns
(Tanaka 1990, Miyashita and Tanaka 1992) is closely related to those of Swindale (1982a)
and Linsker (1986c). In fact, Tanaka’s Hamiltonian for orientation is identical to Linsker’s
energy function if an isotropicQG is assumed. Thus, like Swindale, Tanaka assumes that
the interaction between orientations depends only upon the distance between them and not
the direction. Consequently, his iso-orientation columns are elongated in directions that do
not depend upon the orientation represented within them. Tanaka has recently tackled the
problem of the simultaneous emergence of retinotopy, ocular dominance and orientation
selectivity (Tanaka 1996).

10.4. Band-pass filter models

A number of authors have shown that realistic patterns of ocular dominance and orientation
can be obtained by simply band-pass filtering a random noise pattern. For example, Rojer
and Schwartz (1990) simulated ocular dominance columns by first band-pass filtering a
two-dimensional scalar noise pattern and then applying a threshold. Orientation columns
were simulated by applying a gradient operator to filtered noise, from which they calculated
an orientation map,θ(x, y) = 1

2 arctan{v/u} wherez(x, y) is the filtered noise,x andy are
position values, andu = ∂z/∂x and v = ∂z/∂y. If, as suggested by Erwinet al (1995),
a single filtered scalar noise pattern is used to generate both ocular dominance stripes
and orientation columns, additional points of similarity with experimental data are found:
orientation singularities lie in the centres of ocular dominance columns and, as a simple
consequence of the gradient operation, the locally orthogonal relationship between ocular
dominance and orientation columns is reproduced. Computationally, Rojer and Schwartz’s
model for ocular dominance has little to distinguish it from a simplified implementation of
Swindale’s (1980) model for ocular dominance. The derivation of preferred orientation from
a gradient operation is novel but, as pointed out by Erwinet al (1995), the vectors produced
by this operation have the unrealistic property that for any closed loop,

∫
(v dx +u dy) = 0.

(Equivalently, curl gradz = 0, ∀x, y.) This is not a property of real orientation maps or of
the maps produced by other models, although the difference is hard to detect visually.

Niebur and Ẅorgötter (1993) calculated patterns of orientation preference directly from
the frequency domain, assuming zero energy at all frequencies except at up to three discrete
positions in frequency space at similar distances from the origin. Fixed amplitudes and
random phases were assigned to these positions and the orientation pattern calculated by
back-transforming into spatial coordinates and calculating an orientation angle in the usual
way from the real and imaginary components of the signal. Some support for their approach
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comes from the observation that orientation power spectra in the cat visual cortex (Diaoet
al 1990) often consist of a small number of relatively discrete-looking peaks. However, this
may be because the maps come from small regions of cortex: spectra from larger areas of
monkey cortex tend to be more uniformly annular in shape (Obermayeret al 1991, 1992a,
Blasdelet al 1995).

Grossberg and Olson (1994) proposed a filtering algorithm based on the idea that where
a number of different features are represented on the surface of the cortex, large values of
one feature may correlate with small values of the other features. There is some evidence
for this, which they refer to as competitive normalization, inasmuch as orientation selectivity
seems to be reduced in regions of extreme ocular dominance. A simple way of imposing
this normalization is to impose the restriction thatx2

1 + x2
2 + x2

3 = 1, wherex1, x2, andx3

are the feature values in question, i.e. to map the feature space to the surface of the unit
sphere. This constraint means that any point on the cortex can be uniquely determined by
the values of two angles,α and β, for which the corresponding values ofx1, x2 and x3

are determined by the relationsx1 = cosα cosβ; x2 = sinα cosβ; and x3 = sinβ. The
algorithm works by first assigning a random set of values toα andβ, from which values
of x1, x2, andx3 are then calculated. Each set ofx values is then filtered with an annular
band-pass filter, which may or may not be the same for each feature. (It may be noted that
once this filtering has taken place the normalization constraint no longer holds). Preferred
orientation is then defined asθ = 1

2 arctan{x1/x2} and ocular dominance by the value ofx3.
This model generates realistic orientation columns (for which curl(x1, x2) 6= 0) in which
the orientation singularities occupy the centre of ocular dominance patches. No locally
orthogonal bias in the intersection angles of iso-orientation and ocular dominance borders is
obtained unless an anisotropic filter is used to make the ocular dominance bands run in one
direction. The ocular dominance maps produced by this model, as in Rojer and Schwartz’s,
are somewhat unrealistic because well-defined stripes of uniform width are never present
unless a strongly anisotropic filter is used.

10.5. The relationship between visual cortex shape and ocular dominance column
morphology

Most of the models for ocular dominance column formation discussed so far have simulated
only small regions of cortex and none have considered in any detail the global properties
of ocular dominance columns and their overall relationship with the retinotopic map. An
exception to this is a computational study by Joneset al (1991) which suggests that the
morphological differences between cat and macaque monkey ocular dominance stripes may
be the result of two constraints:

(i) a fixed overall shape of LGN and visual cortex;
(ii) a locally isotropic magnification factor within individual ocular dominance stripes.

This approach stands in contrast to other models (see e.g. Swindale (1981a)) which explain
the feature variations (overall orientation, spots versus stripes, etc) in anad hocfashion by
simply varying parameter values to obtain the desired resemblance.

Joneset al suggest that the overall shape of the visual cortex may be relevant to the
problem, for the following reasons. Cat and monkey LGNs and visual cortices differ in shape
(LeVayet al 1985, Andersonet al 1988): the monkey LGN is roughly circular, but the visual
cortex to which it projects is elliptical, with a roughly 2:1 length–width ratio. In the cat, both
the LGN and cortex are elliptical, with similar length–width ratios. Joneset al calculated
mappings between regions with these shapes, first simplifying the problem by dividing the
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LGN and cortical areas into a small number of hexagons, the width of each corresponding
to the diameter of a single ocular dominance column. This automatically enforces the
constraint of isotropic magnification within ocular dominance columns. Mappings between
pairs of LGN layers (i.e. left and right eyes) and the cortex were calculated, subject to
the constraint of minimizing the maximum cortical distance between representations of
neighbouring LGN points, as well as the number of points that are this distance apart. An
exact solution to this minimization problem, which is NP complete, was obtained using an
algorithm for subgraph isomorphism. The resulting interdigitating arrangement of left- and
right-eye hexagons of the surface of the cortex (figure 16) was different, depending upon
whether macaque monkey or cat LGN and cortex shapes were simulated. For the monkey,
the algorithm produced more or less parallel stripes, running perpendicular to the long axis
of the simulated cortex. For the cat, where two elongated LGNs projected to an elongated
cortex, the arrangement was less regular, with more branching and no consistent overall
direction of stripe elongation. The results show, therefore, that global mapping constraints
may provide an explanation for some of the morphological differences between cat and
macaque monkey ocular dominance columns. More recently, the elastic net algorithm has
been applied to the same problem, with essentially similar results (Goodhill and Willshaw
1994, Bateset al 1995): in these instances, two circular retinas projected to either a circular
or an elliptical cortex.

It is possible to see why these results were obtained, for the following general reasons,
given by Joneset al. First, assume that magnification factor in the macaque LGN is isotropic
(Connolly and Van Essen 1984) and that magnification factor within ocular dominance
stripes is also isotropic. Then, if each of two circular LGN layers is cut into a series of stripes
which are laid alternately side by side, the resulting area covered will be approximately
elliptical, with each stripe running perpendicular to the long axis (LeVayet al 1985). This
also means that overall magnification factor in the cortex must be anisotropic, a conclusion
which was reached by Hubel and Wiesel (1977) and seems to be supported by experimental
measurements (Tootellet al 1988b)†. It is obvious that two elliptical LGNs cannot be
similarly divided into uniform stripes and overlaid on an ellipse with a similar length–width
ratio, without either compressing the retinal map within each stripe, or, as demonstrated by
Joneset al, adopting a much more disordered stripe topology.

These arguments lose their force if magnification factor within ocular dominance
stripes is not constrained to be isotropic, because the within-stripe retinal map can then
be compressed to accommodate any desired combination of LGN, cortical and stripe
morphologies. If magnification factor is so constrained, however, then it is clear that
stripe morphology and cortical shape will not be independent of each other. This raises
an intriguing question. Is the overall shape of striate cortex innately prespecified and
determinative of overall column morphology, or do local factors, perhaps dependent upon
the density and spread of lateral cortical connections, determine the morphology of the
columns and secondarily the overall shape of the cortex? The latter possibility should
not be dismissed, as it is currently a matter of active debate (Innocenti and Kaas 1995)
whether cortical areas and their boundaries are prespecified within the cortex (Rakic 1988),
or determined interactively with the thalamus (O’Leary 1989, O’Learyet al 1994).

† It is interesting that cortical magnification factor in the squirrel monkey, which lacks ocular dominance columns,
is isotropic (Campbell and Blasdel 1995).
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Figure 16. Illustration of the influence of visual cortex shape on ocular dominance stripe
morphology. (A) The mapping from two approximately circular LGNs to an approximately
elliptical cortex produced by an exact solution to a distance minimizing algorithm described by
Joneset al (1991): note that the solution is an orderly pattern of stripes which run perpendicular
to the long axis of the cortex. (B) When two elliptical LGNs map to an elliptical cortex
the solution is a much less orderly interdigitation of inputs. F = fovea; AC = area centralis.
(Redrawn from Joneset al 1991.)
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10.6. Approaches based on information theory

Although much visual cortical development takes place before the eyes are open, it would
be surprising if the early development of receptive field properties was not reflective of
fundamental general principles governing the way in which sensory information is coded
and represented within the brain. Ideas about sensory coding have a long history (reviewed
by Barlow (1989)) and, although they address the question of what the total set of individual
receptive field properties might be, rather than how these properties are arranged spatially
within the cortex, one does not have to add much to ideas about single-cell behaviour to come
up with a topography. Nor can one address the issue of topography without first considering
what properties are, or might be, represented in the map as a whole. Consequently, a number
of authors have suggested that information theory (Shannon and Weaver 1949) may be able
to explain some of the properties of the visual cortex. One idea (Barlow 1959) is that visual
cortex recodes the visual image, detecting and removing redundancies in the firing pattern
of retinal neurons, so that the information in it can be represented by the firing of a smaller
number of neurons in the cortex. The sensory image may also be transformed in such a way
as to render the information in it robust to transmission along noisy channels with limited
dynamic range. It is also probable that a function of cortical processing is the removal of
information which is irrelevant, or relatively unimportant, to the processing that goes on at
higher levels.

Application of these ideas has produced some interesting results. For example, Daugman
(1989) has shown that a highly effective compression of visual images can be achieved if
the image is represented by the outputs of oriented two-dimensional Gabor filters whose
sensitivity profiles resemble the receptive fields of cortical simple cells. This finding, which
is essentially a statement concerning the mathematical properties of natural visual images
(see also Baddeley and Hancock 1991), suggests that a goal of cortical processing might be
to achieve a faithful representation of the visual image with a small number of neurons. In
a series of papers, Linsker (1988a, b, c, 1989a, b, 1990, 1992) has argued, along somewhat
similar lines, that the cortex develops in such a way as to maximize the amount of mutual
information between the input signal (e.g. at the retina) and the output (in the visual cortex).
Application of this principle, namely gradient ascent on a mutual information measure
(Linsker 1989b), leads to a Hebbian-like learning rule which can result in the formation of
topographic mappings with many of the properties of visual cortex maps. Hesselroth and
Schulten (1994) obtained a similar result and showed that topographic representations of
oriented simple cell-like receptive fields could be obtained.

The fact that Hebbian rules can lead to the development of representations that reduce
redundancy should not be surprising. Inputs whose firing patterns tend to be correlated
will tend to converge on the same postsynaptic cell (as happens, for example, in von der
Malsburg’s network for orientation preference), i.e. their signals will be pooled, rather than
kept separate. Many neural nets incorporating Hebbian learning rules (see e.g. Oja 1982,
Sanger 1989, F̈oldiák 1989) are able to find the principal component vectors of the data
sets on which they have been trained and are, therefore, capable of reducing redundancy.
Application of a competitive Hebbian learning rule to a network trained with natural images
(Barrow 1987, Barrow and Bray 1992) gave rise to the formation of receptive fields with
Gabor-like sensitivity profiles, a finding which is consistent with Daugman’s (1989) results.

Information theory is potentially a powerful tool for the study of visual cortex
organization and it is a help that the mathematical foundations of the subject are well
established. However, its application to biological problems is not straightforward. The
fact that there are many more cells in the visual cortex than in the two retinas means that it
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is not a priori necessary to recode the image in a compact form. Removal of redundancy
might seem an obviously worthwhile thing to do, but it is also the case that adding certain
forms of redundancy to the representation might make it less sensitive to added noise or
loss of neurons. Information theory also says nothing about the relative importance of
different kinds of information, or what information it might be possible to discard during
sensory processing. For this, ideas derived from biological considerations are necessary.
Barlow (1986) has suggested that a task of sensory processing is the detection of ‘suspicious
coincidences’, that is, pairs of sensory events whose co-occurrence is greater than chance
and suggestive of a causal relationship. Cortical maps may explicitly represent such pairings
by ensuring that the cells involved in detecting the pairing are close together. Although this
may seem like a biological constraint, it is perhaps not all that different from straightforward
redundancy reduction. Marr’s (1970) ‘fundamental hypothesis’† is arguably the right kind
of idea, as it is a speculation about a specific type of redundancy which may be a property
of the real world and which might be important in learning and perception. As far as I am
aware, this idea has not yet been implemented as a model for visual cortical receptive field
organization and topography: it, and ideas like it, might be worth exploring in this context.

11. Coverage, continuity and wirelength

11.1. Coverage

The idea that uniform representation of visual features within area 17 might be an important
constraint on columnar structure is due to Hubel and Wiesel (1974b, 1977). They suggested
that columns in the striate cortex appeared to be laid out in such a way as to ensure that
all combinations of eye and orientation preference occurred at least once within any region
equal in size to the cortical point image. This could be an important constraint on the
evolution of the mechanisms of columnar development in the cortex, because an absence of
certain combinations of receptive field properties might render the animal perceptually blind
or less sensitive to the unrepresented stimulus. Swindale (1991) suggested that coverage
might be measured by calculating, for each point in a suitably defined stimulus space, the
total amount of neural activity evoked in the cortex. This was given by the expression

A(θ, φ, ψ, e) =
∫

ne(x − x ′, y − y ′)�
{
θ − θc(x − x ′, y − y ′)

}
P(x ′, y ′) dx ′ dy ′ (24)

whereθ is stimulus orientation;(φ, ψ) is retinotopic position, assumed to map to positions
(x, y) in the cortex; ne(x, y) is the cortical response to eyee ∈ {L, R}; �(θ) is the
orientation tuning function (assumed to be the same at all points in the cortex) andP(x, y)

is the cortical point image. A normalized measure of uniformity was defined asc′ =
standard deviation(A)/mean(A). A similar measure has been termed feature normalization
by Grossberg and Olson (1994). There is a close similarity between the calculation of
coverage, which takes a cortical map of stimulus properties and projects it as neural activity
in stimulus space, and the maps produced by the elastic net and Kohonen algorithms,
since the latter also map each position in the cortex into the location in stimulus space
corresponding to the centre of the receptive field at that cortical location. In the limit that
receptive field widths and point image size are delta functions, the two maps are identical.

Although calculations of coverage have not been made for the maps generated by the
elastic net or Kohonen algorithms, it is easy to see that these algorithms will tend to ensure

† ‘Where instances of a particular collection of intrinsic properties (i.e. properties already diagnosed from sensory
information) tend to be grouped such that if some are present, most are, then other useful properties are likely to
exist which generalize over such instances. Further, properties are often grouped in this way’.
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uniform coverage, provided that a sufficiently large number of stimuli, uniformly distributed
in stimulus space, are presented during the training process. When only a small number
of stimuli are presented, the two algorithms behave differently: the elastic net method will
interpolate between stimuli and produce a map in which positions between the stimuli are
represented, whereas the Kohonen map will represent, over larger cortical areas, only the
stimulus values which were presented. It is not clear at present which of these behaviours
(if either) corresponds more closely with the behaviour of the cortex, although it is not hard
to envision experimental tests of the differences.

Calculations based on simulated visual cortex maps (Swindale 1991) allowed an analysis
of some of the parameters that are likely to affect coverage uniformity, i.e. the amount by
which coverage varies with position within stimulus space. Coverage was found to be
most uniform when the period of the orientation columns was about half that of the ocular
dominance columns and when the point image was no smaller than about twice the period
of the ocular dominance columns. This is, at least approximately, in agreement with the
measurements of these parameters that have been made in macaque striate cortex, where
orientation columns, ocular dominance columns and point image sizes are about 0.6, 0.8
and 1–2 mm, respectively. This suggests that completeness may be an important constraint
on striate cortex organization, at least for the simple stimulus space defined by orientation,
ocular dominance and receptive field position.

It is an open question, however, as to whether uniform coverage is always necessary,
or is always obtained. One possibility is that higher cortical areas are able to interpolate
between incomplete representations in lower cortical areas. This must ultimately be true,
because, as has often been pointed out, there are not enough neurons to represent every
possible combination of stimulus features, even though these combinations can all be
perceived as unique. It is possible that complete representations of even low-level visual
features are not obtained, because human psychophysical evidence shows that there are
irregular variations in sensitivity across the visual field for simple stimuli, such as gratings
of particular orientations (Regan and Beverly 1983), for positional hyperacuity thresholds
(Jiang and Levi 1991) and for motion in depth (Hong and Regan 1989). These variations
are idiosyncratic and unpredictable in their location in the visual field, suggesting that they
might be a correlate of uneven representation of stimulus responsiveness in lower visual
cortical areas.

11.2. Continuity

The observation that the receptive fields of neighbouring cortical neurons tend to be similar
was one of the first significant discoveries made about the physiological organization of the
cortex (Mountcastle 1957). One way to quantify the similarity is to calculate the surface
area of the cortex as projected into a suitably defined stimulus space (figure 12), e.g. by

C =
∑
i,j

|yi,j − yi+1,j ||yi,j − yi,j+1|

whereyi,j is the receptive field of the point in the cortex with location (i, j ). The lower
the value ofC, the more continuous the cortical map. The constraints of continuity and
completeness conflict: it is obvious that the cortical map can be completely continuous
only at the expense of completeness, i.e. all receptive fields the same, while completeness
is easily obtained at the expense of continuity, e.g. by assigning receptive field values at
random to different cortical locations. It has been suggested by several authors (see e.g.
Niebuhr and Ẅorgötter (1993), Yuilleet al (1991), Erwin et al (1995)) that a common
principle underlying most models of visual cortex topography is that they maximize some
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combination of continuity and completeness, making use of the fact that increasing one will
tend to decrease the other.

This can be illustrated, as follows, by the behaviour of the elastic net algorithm. The
learning rule for the algorithm is given in (22b), that is, an expression for the change
in receptive field properties1yj in terms of the distances between neighbouring cortical
locations and their distances from a set of stimulus valuesxi . If the expression for1yj

is integrated with respect toyj , an energy, or cost function,E, is obtained (Durbin and
Willshaw 1987, Yuille 1990) as the sum of two terms:

E = −αk
∑

i

log
∑

j

exp
{−|xi − yj |2/2k2

} + 1
2β

∑
j

|yj − yj+1|2. (25)

This function (by definition) has the property that1yj = −k∂E/∂yj . Thus, at each
iteration of the algorithm,∂E(= −1yj ∂yj /k) is guaranteed to be negative (provided that
1yj is small enough that its sign is always the same as∂yj ) and so the learning rule explicitly
minimizes the function given byE. The first term inE is essentially the completeness
constraint, i.e. minimizing its value will tend to ensure that each stimulusxi is represented
in the cortex, i.e. that there is ayj = xi , ∀i. If k is interpreted as the width of the receptive
field (e.g. in visual space or along the orientation axis) then this part of the expression is
analogous to the definition of coverage in (24), if both orientation tuning curves and point-
image profiles are assumed to be Gaussian in stimulus space†. Orientation tuning curves are
often well described by a Gaussian function, while if locally uniform and isotropic retinal
magnification factors are assumed, then the point image will be Gaussian in stimulus space,
as well as on the surface of the cortex. The term

∑
j exp

{−|xi − yj |2/2k2
}

is thus a good
approximation to the total response given by the cortex to a stimulusxi . The second term
in the expression measures continuity, since its value will be small when the receptive field
values of adjacent cortical locations are similar. The trade-off between completeness and
continuity is then determined by the relative values of the parametersα andβ.

Energy or cost functions can be defined on the basis of many different considerations and
learning rules can be derived from them by differentiating with respect to the parameter(s)
which will be changed by the resulting algorithm. This is a widely used tool in computational
neuroscience (Hertzet al 1991, Haykin 1994, Anderson 1995), and often reveals similarities
between models (see e.g. Yuilleet al (1991), Yuille (1990), Mitchison (1995)). However,
if the resulting learning rule is to be useful as a model of real development, both it and the
associated energy function have to have some biological plausibility.

While continuity is generally assumed to be important, the biological reasons for it
are still a matter for speculation. One possibility, discussed in the following section, is
that continuity minimizes the length of connections in the cortex, assuming that the net
length of the axonal and dendritic connections between any two cells is proportional to
the similarity in their receptive field properties as well as to their physical separation in
the cortex. Another possibility is that regulation of the supply of blood-borne nutrients to
nerve cells may be simplified if neurons which are likely to respond simultaneously are
grouped together. The success of functional magnetic resonance imaging methods (which
detect local variations in blood flow within the brain) bears witness to the fact that blood
flow within small brain regions is precisely regulated by neural activity. Another possibility
(Swindaleet al 1990) is that the transmission of signals from one cortical region to another
may be easier if neural activity patterns are band limited or band pass in the spatial domain:
this will be achieved if nearby neurons have similar response properties, so that they tend
to be simultaneously active. Because transmission of information in spatially band-pass

† This was pointed out to me by Graeme Mitchison.
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signals can be achieved with a relatively coarse set of samples, continuous representations
may allow information to be transmitted to higher cortical areas by smaller numbers of
neurons than would be required otherwise.

11.3. Wirelength

The possibility that continuity in cortical topography might be explained as the outcome
of the requirement to minimize the total volume of axons and dendrites was suggested
by Cowey (1979) and has been studied in more detail by Mitchison and Durbin (see
Mitchison and Durbin 1986, Durbin and Mitchison 1990, Mitchison 1991, 1995). Although
the biological appeal of this idea is obvious, it is hard to explore its consequences with
any certainty, partly because any calculations will depend upon presently very incomplete
knowledge of the rules governing the connections between cortical neurons. One simple
assumption, however, is that connections are likely to be made preferentially between
regions of cortex with similar response properties, i.e. those that can be mapped to
neighbouring regions in stimulus space. Given this, Mitchison and Durbin (1986) proposed
a ‘wiring cost function’, defined (for a two-dimensional stimulus space) by

C =
∑
i,j

{|f(i, j) − f(i + 1, j)|p + |f(i, j) − f(i, j + 1)|p}
(26)

wheref(i, j) is the location in the cortex corresponding to the position(i, j) in stimulus
space and the exponentp is used as way of weighting the cost function more or less heavily
in terms of long versus short connections. Thus, whenp = 1, the cost is simply the net
length of the wires, whenp < 1, the cost is dominated by the number of short connections,
while if p > 1, longer connections dominate the cost.

Given this (arguably somewhat simple†) estimate of a wirelength cost, it is of interest
to ask what types of map will minimizeC. For the simple case where the stimulus
space is a two-dimensionalN × N array, and the cortex is a straight line (i.e. the integers
1, . . . , N2), it is possible to find provably optimal solutions, i.e. numberings of the array
which minimize the sum of the absolute values of the differences between neighbouring array
points (Mitchison and Durbin 1986, Durbin and Mitchison 1990). For values ofp < 1, these
solutions resemble those produced by the elastic net algorithm, which suggests, but does not
prove, that when the algorithm is applied to the task of producing more realistic simulations
of visual cortex structure, the wirelength measure of (26) is also being minimized.

Despite this similarity, it cannot be claimed with certainty that the elastic net algorithm
explicitly minimizes C: as shown in the preceding section, what the algorithm actually
does is minimize the term

∑
j |yj − yj+1|2 which is the inverse ofC, i.e. the sum over the

cortex of the squares of the distances, in stimulus space, between adjacent cortical points.
The two expressions are not the same, although they might be expected to behave similarly
in most instances. More recently, Mitchison (1995) has argued that maps produced by the
Kohonen algorithm minimize a measure that is closely related to wirelength. This argument
makes use of the demonstration by Luttrell (1989, 1990) that the Kohonen algorithm can
be approximated by a procedure which performs gradient descent on a quantity known as
a minimum distortion functional. Mitchison shows that this functional can be generalized
to resemble a wirelength measure.

† The calculation takes into account only connections made between cells with neighbouring receptive field
positions, i.e. for stimulus valuesi and i + 1, etc, and also requires quantization of stimulus space into discrete
values. While the definition could be broadened to include (potential) connections made by neurons with more
dissimilar receptive field properties, this would require further assumptions about how to weight connection lengths
in terms of distances in stimulus space.
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Mitchison (1991) has also considered the following interesting, and somewhat less
abstract, version of a wirelength problem: in this, axonal volume, rather than net length,
is the relevant biological variable and relatively subtle factors, such as axonal branching
topology and the change in axonal diameter at branch points, turn out to be important.
Suppose there are two sets of neurons,A andB, with fixed rules regarding the number of
connections made between neurons of like and unlike types. What spatial arrangement of
neuronsA andB minimizes the total volume of connections? One possible layout is forA

andB to be placed in nearby, but physically separate areas: each neuron inA can connect
efficiently with other neurons inA and send a single longer ‘commissural’ connection to
the region in which theB neurons are located, with a relatively small penalty in terms
of volume, and then make the necessary connections withinB. At the opposite extreme,
neuronsA andB could be interspersed: this would lengthen the connections made between
neurons of the same type, since each would be, on average, further apart, but commissural
connections would no longer be necessary. It is straightforward to see that the first solution
is best if A and B are weakly, or not at all connected, while the second solution will be
best if setA connects only withB, andvice versa, and not with members of itself. More
interesting, however, is the existence of intermediate cases, in which the most favourable
arrangement is a set of alternating stripes ofA and B. Mitchison shows that there are
certain requirements for this: one is that when axons branch, the diameter of each branch
should not be much less than that of the parent axon; another is that axons should connect
sites efficiently (Mitchison assumed ‘minimal spanning trees’).

Although none of the preceding arguments constitutes proof, they are all consistent with
the idea that retinotopic maps, ocular dominance and other types of functional segregation,
are, at least in part, the outcome of an evolutionary process in which developmental
mechanisms leading to shorter wiring had a functional advantage. Demonstrations of
this which go beyond plausibility may be almost impossible to obtain however, given the
complexity of the variables that combine to determine wiring length and volume, and the
need to decide on the functional ‘penalty’ or cost function to assign to these parameters.
Models which explicitly minimize wirelength (see e.g. Todorovet al (1995)), as well as
better definitions of wirelength, may not in the end be all that useful, because (as pointed out
by Durbin and Mitchison (1990)) it is unlikely that developmental mechanisms explicitly
minimize wirelength in any case: evolution may simply have selected mechanisms which,
like the elastic net and related algorithms, produce reasonably good solutions to the problem.

12. Evaluation of assumptions common to most models

A common set of simplifying assumptions underlies most of the models discussed here.
Although these will be evaluated more or less critically, it should be remembered that
simplification is a necessary ingredient of any model and is often desirable, notwithstanding
the probability of criticism on the grounds of unrealism.

12.1. Patterned retinal activity

In evaluating the types of retinal activity that ought to be included in a model, it should
be remembered that the basic forms of stimulus specificity (localized receptive fields,
orientation specificity and eye preference) and their accompanying topography are all
capable of forming in the absence of visual stimulation, although the effects of visually
driven inputs after eye opening are almost certain to be important as well. None of the
models discussed here deals with this situation in a satisfactory manner, although models
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which include both pre- and postnatal patterns of retinal activity are beginning to appear
(Berns et al 1993, Olshausen and Field 1995). One difficulty is the limited amount of
relevant physiological data (Mastronarde 1983, Galli and Maffei 1988, Meisteret al 1991,
Wong et al 1993) which is all from subprimate species. It would be extremely useful to
know what patterns of retinal activity are present prenatally and in darkness postnatally in
primates, but finding this out is likely to be very difficult.

12.2. Hebb synapses

There is an overwhelming amount of circumstantial evidence for Hebbian synapses of
some kind in the visual cortex (reviewed by Constantine-Patonet al 1990, Rauschecker
1991, Friedlanderet al 1993). There is a small amount of direct evidence (Frégnacet
al 1988, 1992, 1994, Greuelet al 1988) showing that stimulation of afferent pathways
to a cell in combination with depolarization of the cell will lead to strengthening of the
effects of afferent stimulation alone. However, there are still rather few data that would
support a choice between different candidate varieties (see Brownet al 1990) of Hebbian
modification rules. As mentioned above, there is evidence (Kosselet al 1990) for the local
propagation of Hebbian strengthening through the cortex, as required by volume learning
and by competitive Hebbian models. There is also evidence (Reiter and Stryker 1988) for
Hebbian weakening of connections which has not been incorporated into most Hebbian
models. Uncertainty about the nature of Hebbian modification in the developing visual
cortex is arguably the weakest component of most models.

12.3. Radially symmetric, short-range excitatory and long-range inhibitory lateral cortical
connections

This is an almost universal ingredient, but is surprisingly difficult to support with
physiological or anatomical data. It is well known that lateral connections in the visual
cortex are not uniform but patchy and extend over distances of several millimetres (Gilbert
and Wiesel 1979, Rockland and Lund 1983, Livingstone and Hubel 1984b). They are often
anisotropic in their spread (Luhmannet al 1986, Matsubaraet al 1987, Fitzpatricket al
1993, Yoshiokaet al 1996). In cats, the pattern of lateral connections is diffuse and extensive
in early postnatal life (Callaway and Katz 1990) and connections are selectively eliminated
to form patches in an activity-dependent fashion (Luhmannet al 1986, Callaway and Katz
1991, L̈owel and Singer 1992). The connections which extend furthest are probably mostly
excitatory (McGuireet al 1991, Hirsch and Gilbert 1991, Kisvárday and Eysel 1992) and
link columns with similar orientation preferences (Gilbert and Wiesel 1989); in contrast, the
axons of inhibitory neurons travel shorter distances of up to a millimetre (Kisvárday 1992).
The models can only be made to fit into the framework of these findings if it is assumed
that the long-range excitatory connections do not play a major role in the development of
topography and that a second distinct set of short-range (< 200µm) excitatory connections
is present. Physiological experiments in cat visual cortex which examined the patterns of
spike correlation between pairs of neurons at various distances apart (Hataet al 1991)
showed that excitatory connections were more common between cells< 400 µm apart,
but did not provide convincing evidence that inhibitory interactions were more common for
larger separations (figure 7 in Hataet al 1991). It is also an open question as to whether the
very weak interactions shown by Hataet al, and by other cross-correlation studies, are as
strong as is required by most models. Whatever the answers to these questions, it seemsa
priori likely that present assumptions (the model of Sirosh and Miikkulainen (1994, 1995) is
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an exception) about fixed and radially symmetric lateral cortical interactions will eventually
turn out to be only crude approximations to the truth. On the other hand, lateral interactions
mediated by the extracellular diffusion of chemical messengers might satisfy this condition
reasonably well.

12.4. Normalization of input strengths

Although there is no doubt that there must be upper limits on such things as the total
number of connections received by each neuron, the total number of synapses per axon, the
total number of synapses per unit area (or volume) of cortex and the maximum strength
of an individual synapse, the factors determining the actual values of these parameters in
the brain are likely to be diverse and it is possible that none of these upper limits is ever
actually reached. Nevertheless, most models impose at least some of them quite rigidly. A
common technique is to maintain the sum of input strengths constant for each postsynaptic
neuron, but it has not yet been shown experimentally that increasing the strength of one
set of connections to a neuron leads to a simultaneous weakening of other connections to
the same neuron, nor has a cellular mechanism for such an interaction been demonstrated.
Another technique, conservation of the total synaptic strength per axonal arbor, can be
supported experimentally, as there is evidence that removal of synapses from one part of
an axon can result in an increased density of innervation elsewhere (Pockett and Slack
1982, Sabel and Schneider 1988). But the effects of monocular deprivation clearly show
that individual axons have the capacity to form either more or less than their usual number
of connections in different circumstances, which means that it is inappropriate to enforce
axonal conservation as a rigid constraint. In addition, overall synaptic density increases
substantially during the periods of ocular dominance and orientation column formation
(Cragg 1975, Rakicet al 1986). With the exception of an upper or lower limit on the
strength of individual connections, most other constraints are, in effect, lateral interactions
occurring over distances equal to the spread of either individual axons or the dendrites of
individual neurons. If implemented as such, they do not need to be enforced rigidly.

A similar criticism of the use of normalization rules has recently been made by Elliott
et al (1996a, b, c) who describe them as ‘an unsatisfactory mathematical trick’ and suggest
an alternative, and more flexible, type of rule based on competition for neurotrophins.

13. Overall evaluation of the different models

13.1. Ocular dominance models

The majority of models proposed for ocular dominance column formation (table 2) produce
acceptably realistic branching stripes, so that further differentiation between models on
the basis of their stripe morphology alone may not be very useful, unless quantitative
morphological indices can be found that are able to differentiate between patterns that are
visually similar. As reviewed above, however, there is a considerable between-species
variability in the segregation pattern of columns, ranging from no segregation, transient
segregation, rather irregularly spaced spots and patches with overlap at the boundaries (in
the cat), to the industry standard striped pattern with strongly parallel bands and sharp
boundaries found in the macaque monkey. The extent to which the different models can
cope with this range of variability has not, for the most part, been tested, although it is
suggested above that Swindale’s (1980) model can accommodate much of it, while some
authors (see e.g. Tanaka 1991a, b, Joneset al 1991) have applied their models specifically
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to the issue of morphological variability.
Most of the models manage to explain the effects of monocular deprivation in reasonably

satisfactory ways. However, no explanation has yet been given for the different effects of
binocular visual deprivation in area 17 of the cat, where segregation is impaired, and the
apparent lack of effect of it in area 18 of the same species, and in area 17 of the macaque
monkey—perhaps because the results from the cat are not universally accepted. While the
model of Goodhill (1993) is able to account for the effect of strabismus on the spacing
of the columns, the models of Milleret al (1989) and Tanaka (1991) probably cannot,
because column spacing in these models is determined by intracortical interactions, rather
than by intraocular correlations in neural activity. Models based on Hebbian rules which
permit only strengthening of synaptic inputs (see e.g. von der Malsburg (1973), Milleret
al (1989), Goodhill (1993)) cannot explain the results of experiments (Reiter and Stryker
1988) in which the GABA agonist muscimol is infused into the cortex while the animal is
monocularly deprived. This leads to a shift in the ocular dominance histogram in favour of
the deprived eye. This result suggests a modification of Hebbian rules (see section 2.4.6),
which might be worth incorporating into future models.

No attempt has been made to explain the apparent indifference of ocular dominance
stripes to the perturbation introduced by the optic disc representation (e.g. figure 2). It
might be illuminating to try to model this ‘natural experiment’.

13.2. Orientation column models

There is good agreement among experimenters about the general properties of orientation
columns in cat and macaque monkey visual cortices (summarized in table 1) and these
properties provide a good basis for judging orientation column models. A number
of suggested arrangements, including all those not based explicitly on developmental
hypotheses (Hubel and Wiesel 1977, Braitenberg and Braitenberg 1979, Soodak 1987,
Götz 1987, 1988, Rojer and Schwartz 1990) have turned out to be incorrect, although
partial confirmation might be claimed for some of them. The earliest neural network model
proposed to account for the layout of orientation columns (von der Malsburg 1973) was too
small to permit a detailed comparison with the experimental data obtained many years later,
but it is possible that a larger version would produce realistic results. More recent neural
net models have had mixed success: the models of Linsker (1986c) and Miller (1992b,
1994) generate superficially realistic patterns containing half-rotation singularities, but the
domains for a given orientation show a strong tendency to run either parallel (Linsker) or
orthogonal (Miller) to the direction of the orientation as projected in retinotopic coordinates
onto the surface of the cortex. This type of relationship is not observed experimentally
(Erwin et al 1995). The models of Swindale (1982a, 1992a), Obermayeret al (1990, 1991,
1992a, b), Durbin and Mitchison (1990), Tanaka (1990), Miyashita and Tanaka (1992)
and Grossberg and Olson (1994) produce orientation maps that have not yet been shown
to differ from real maps in any significant detail. This list includes models based on
competitive and non-competitive Hebbian mechanisms, as well as the elastic net and low-
dimensional Kohonen algorithm.

Many of the models (see e.g. von der Malsburg (1973), Durbin and Mitchison (1990),
Obermayeret al (1990, 1991, 1992a, b), Tanaka (1990), Miyashita and Tanaka (1992))
assume, either explicitly or implicitly, the existence of oriented patterns of retinal activity.
This is a critical detail because it is still an open question as to whether the patterns of
activity that are present before the time of eye opening in cats and monkeys have the
required properties for the models to work. For this reason, Linsker’s and Miller’s models
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are valuable because they show that there are conditions in which radially symmetric patterns
of spontaneous activity might, through a symmetry-breaking process, drive the formation
of oriented receptive fields.

Finally, while ocular dominance is a property which can very probably be adequately
explained as the result of the anatomical distribution of left- and right-eye inputs, orientation
selectivity is probably much more complicated. Very few structural correlates of orientation
preference have been discovered† and the connectivity patterns that might give rise to
orientation selectivity are still largely a matter for speculation. Most of the models discussed
here assume that the major determinant of preference is the pattern of convergence of
geniculate afferents (with perhaps some additional effects provided by radially symmetric
Mexican hat lateral interactions within the cortex). However, other factors will probably
have to be taken into account. These include antagonism between ON and OFF centre
afferents, inhibitory and feedback pathways and lateral cortical interactions that are more
complicated than the Mexican hat model (Peiet al 1994, Volgushevet al 1995). A number
of models, exploring how some of these factors might contribute to the response properties
of individual neurons, have recently been proposed (see e.g. Heeger (1992), Somerset al
(1995)). It is likely that realistic models of orientation column structure will eventually have
to take into account circuitry that is more complex than simple convergence of geniculate
axons onto single cells.

13.3. Combined models of orientation, ocular dominance and retinotopy

The only models developed so far that deal successfully with all three properties are based on
either the elastic net or the Kohonen approaches (Obermayeret al 1991, 1992a, b, Erwinet
al 1995). These alternatives appear to perform equally well in respect of the separate retinal,
orientation and ocular dominance maps and they reproduce the known structural relations
between orientation and ocular dominance. The success of these models is impressive,
given their underlying simplicity. There may be few other areas of neurobiology where a
relatively straightforward mathematical procedure has been able to accurately reproduce such
an apparently complex set of data. The success of the models will be further enhanced if the
predicted inverse relation between orientation gradient magnitude and retinal magnification
factor can be confirmed; it will be puzzling, in fact, if it is not.

13.4. Competitive Hebbian models versus linear Hebbian models

The Hebbian rules used in the models discussed here fall into two main classes: competitive
(see e.g. Durbin and Mitchison (1990), Obermayeret al (1990), Goodhill, (1993)) and non-
competitive‡ (see e.g. Linsker (1986a), Milleret al (1989), Tanaka (1989)). The mechanisms
implied by each are quite distinct. In the non-competitive models, the learning rule is local
and the strengths of individual synapses change purely on the basis of their correlation with
their postsynaptic cell. Changes are assumed to be slow and governed in a linear way by
the time-averaged statistics of the input firing patterns. Competitive Hebbian mechanisms
increment the strengths of all the connections in the vicinity of the cortical cell which is
firing most strongly in response to a stimulus. Because of the nonlinear nature of this

† One recent finding is that in the tree shrew, intracortical connections extend furthest in directions in the cortex
which correspond to the orientation preference of the cell as projected onto the retinotopic map (Fitzpatricket al
1993). This result may turn out to be true for other species as well, once local anisotropies in retinal magnification
factor are taken into account.
‡ These terms are less than ideal because all the models implement mechanisms that are competitive in one way
or another.
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selection process, it is not possible to average over repeated stimulus presentations and
stimuli have to be presented one at a time to the network while it learns. The mechanism
for the local strengthening (Kohonen 1993) might involve the release and lateral diffusion
of one or more ‘modification inducing substances’ triggered in an all-or-none fashion by
suprathreshold activity in a set of strongly responding neurons.

Judged by results, competitive Hebbian models seem to perform somewhat better than
non-competitive ones, although it is not improbable that equally good non-competitive
models may be devised in future. Although there is experimental evidence (reviewed in
sections 8.2 and 10.2) suggestive of the existence of a diffusive extracellular signal like that
implied by the Kohonen model, this evidence is, so far, equally consistent with the volume
learning hypothesis proposed by Montagueet al (1991): in the latter case, the relevant
signal is presumed to be released in amounts linearly proportional to postsynaptic activity,
rather than in a nonlinear, all-or-none fashion.

14. Comments on the field as a whole

14.1. How similar are the different models?

As pointed out by several authors (see e.g. Niebuhr and Wörgötter (1993), Grossberg and
Olson (1994), Erwinet al (1995)) almost all models of visual cortex organization implement,
in one way or another, two conflicting constraints: continuity and completeness. Analogous
terms with essentially similar interpretations, such as coverage (Swindale 1991), feature
normalization (Grossberg and Olson 1994), far-field diversity and near-field conformity
(Götz 1988), and so forth, have also been used. In most models, continuity is imposed by
assuming lateral excitatory connections between cortical neurons, fixed local axonal arbors,
or lateral diffusion of chemical messengers. Completeness is attained in most models
by presenting them with enough stimuli, and also indirectly by the use of normalization
rules and/or lateral inhibition. Because they are very general in nature, continuity and
completeness constraints can be implemented in many different ways and this is undoubtedly
one of the reasons for the plethora of successful models.

The models should not, however, be dismissed as merely superficial variations on a
common theme, although that may, by now, seem tempting. First, even if the continuity
and completeness constraints can be applied in a relatively ‘pure’ form in a model (this is
perhaps most obvious in the elastic net formulation discussed in section 11.2), questions
remain, such as what determines the relative importance of continuity versus completeness
and how to perform the optimization. This latter issue may be non-trivial because, for
problems of this complexity, no practical method exists which is able to find the single
optimal solution. This may not be a disadvantage because it is unlikely that the cortex will
achieve the optimum solution in any case. But it then becomes important to consider the
variety of near-optimal solutions which may exist and the possibility that these do not all
resemble the cortex, in spite of yielding similar energy or cost values. If this is so, then
even if the different models can be shown to be related, in the sense that they minimize
the same things, the ways in which they perform the minimization may be significant:
different algorithms (or developmental mechanisms) may leave their own signature on the
final patterns they produce, even if, from a computational perspective, they are doing the
same thing. This could provide a further basis for distinguishing between models that
otherwise might seem to be equivalent. A somewhat more obvious, and related, requirement,
is that the intermediate stages of the models should resemble those of real development.
In other words, models may be differentiable, even in cases when they implement similar
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Figure 17. A diagram illustrating the concepts of complementarity and anticipation. The
shaded region indicates the presence of a smooth transition between genetic and environmental
contributions to central nervous system structure: close to the boundary (shaded region), both
mechanisms may be capable of determining certain structures and it may be hard to distinguish
between them. As one ascends the phylogenetic scale, genetic mechanisms are increasingly
able to determine structure, because they are able to anticipate the consequences of learning
which would otherwise occur later in development. (Mechanisms that utilize spontaneous neural
activity are defined here as genetic: their operation is regarded as, in principle, different from
those that rely upon environmentally driven neural activity, even though, in practice, the actual
machinery might be similar, or even identical.)

principles and approach similar end points.
The mathematical analyses of models performed by Yuilleet al (1991) and Mitchison

(1995) are for the most part demonstrations of similarity, rather than formal proofs of
equivalence. This, and the preceding arguments, suggest why, even if many of the models
are formally similar, they are not identical and do not all make the same predictions. Even
the two which seem most likely to be related, the elastic net, and low-dimensional Kohonen
algorithms, behave differently when, for example, they are presented with non-uniform
stimulus distributions. Thus, while it is clearly important to draw attention to and to explore
the formal similarities between models, it may also be illuminating to concentrate on the
differences between them, since this process is more likely to lead to useful experimental
tests.

14.2. Complementarity and anticipation

While not all the models are the same, it is clearly the case that many of them can
be implemented in different ways, e.g. by mechanisms based on chemical diffusion,
spontaneous activity and visually driven neural activity. It may be significant that these
biologically distinct mechanisms can lead to similar end results. Development of the
brain proceeds through a variety of stages in which the earliest events are programmed
at the genetic level, while later ones are increasingly a function of neural activity, at first
spontaneous in origin and finally resulting from environmental stimulation. An analogous
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progression occurs in phylogeny, with the connections in the simplest nervous systems being
almost completely specified genetically (e.g. inC. elegans) while in the most complex,
genetic information is clearly inadequate as a means of specifying all the connections.
Successful development of the cortex in individual animals may require a smooth transition
between these stages and this may be simpler if genetic and neural activity based mechanisms
behave similarly and can coexist. The possible existence of such a ‘complementarity
principle’ (analogous to Bohr’s principle that quantum and classical mechanics should blend
smoothly at intermediate size scales) was suggested by Grossberg (1976) and a related idea
has been discussed by Kandel and O’Dell (1992). It means that a biologically realistic
model of visual cortex development may have to incorporate many different mechanisms.
The awkwardness of this, from a practical standpoint, and the difficulties it poses for getting
a realistic model right in the long run, should not hide the interest of the underlying reasons
for it.

Complementarity may confer another advantage. Other things being equal, it is probably
better for an organism if the connections in its nervous system can be specified genetically,
rather than environmentally: genetic (or epi-genetic mechanisms utilizing spontaneous
neural activity patterns) may be more reliable, and the necessary connections can be made
before birth, giving the animal an advantage—providing of course that genetic mechanisms
can reliably anticipate the patterns of natural stimulation that will occur later. This is
very likely to be the case for V1 development, since the low-level visual features that
are represented in V1 topographic maps are dependable properties of the world. In such
circumstances, there may be an evolutionary pressure for genetic mechanisms to take over,
or anticipate, what might later have been achieved by environmentally driven patterns of
neural activity. Thus, homologous neural structures (e.g. area 17 in cats and monkeys) are
more likely to be genetically determined in the phylogenetically more advanced species.
Figure 17 attempts a visual representation of these ideas. They may explain some of
the species variability, e.g. between cats and monkeys, which has bedevilled attempts to
disentangle genetic and environmental contributions to the early development of topography
in the striate cortex.

15. Future directions

15.1. Questions for experimenters

• What are the pre- and postnatal temporal and spatial dynamics of spontaneous and visually
driven activity in retino-geniculate and geniculo-cortical afferents?

• What are the temporal dynamics of axonal and dendritic growth and of synapse formation
in early cortical development? How do growing axons behave and what are the chemical
and electrical signals to which they respond?

• When a connection between an axon and a cell is removed, or strengthened, what happens
(i) to the other connections to the cell, (ii) to other connections made by the axon?

• What kind of topology, if any, is present in the distribution of axonal inputs within the
dendritic arborization of individual neurons?

• How accurate is the retinal topography at the time when axons leave the subplate and
invade the cortex?

• How accurate is retinal topography at the stage when ocular dominance and orientation
columns begin to emerge?
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• Is retinal magnification factor locally uniform in the visual cortex? If not, is there a
correlation between orientation gradient and retinal magnification factor?

• Please provide a ‘movie’ of columnar structures forming in young animals, or a description
as close to a movie as possible!

• Is there a systematic variation in the spatial phase of simple cell receptive fields with
tangential position in the cortex?

• Please continue to provide detailed quantitative information on the effects of different
manipulations of the visual environment on columnar periodicity and structure!

15.2. Suggestions for modellers

• Include receptive field scatter and the point image; this will mean modelling several
cortical units at each location rather than just one.

• Include intracortical synaptic modification rules, including modification of inhibitory
synapses.

• Include patterns of retinal activation likely to exist pre- and postnatally, if necessary as
separate pre- and postnatal phases.

• Include stimulus properties, additional to the three discussed here, which appear to have
orderly columnar representations in the cortex, e.g. spatial frequency and colour in the
macaque and direction preference in the cat: the latter will require one to address the
problem of temporal dynamics of the correlations in retinal activity patterns.

• Take into account the fact that connections are made, at least initially, by axons branching
and growing in response to directional cues, e.g. chemical concentration gradients (Gierer
1987). Directed sprouting and axonal growth are almost certainly important components of
early neural development and may also be important at later stages.

• Do not ignore the fact that neurons have dendrites: although the dendritic fields of many
cells are extremely restricted in the tangential direction (i.e. a radius6 100 µm), and
axons do, in general, extend over much larger distances, there is an increasing amount of
evidence for activity-dependent plasticity of dendrites (e.g. Bodnarenko and Chalupa (1993),
McAllister et al (1995)); furthermore, the dendrites of some cells extend over distances that
can be significant (e.g.> 100 µm) on the scale of column structure.

• Do not incorporate normalization constraints rigidly: instead incorporate them into an
overall description of pre- and postsynaptic trophic factors controlling the growth and
survival of axonal connections.

• The continuity constraint has proved powerful in explaining much of visual cortex
structure, but more work needs to be done to explain why continuity might be important
biologically. Explanation in terms of economy of wiring might not always be correct, e.g.
some types of computation might involve shorter wiring if cell types with different receptive
field properties are close together. It remains to be shown that the wiring involved in
generating orientation selectivity (which is at present unknown) is minimized by the known
pattern of columns.

• Remove as much detail as possible from your model, without reducing its descriptive
scope.
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16. General conclusions

Many aspects of visual cortex topography, including the patterns of ocular dominance and
orientation columns, can be satisfactorily explained as the outcome of a self-organizing
process in which most of the initial conditions are random, and in which Hebbian learning
mechanisms and cortical interactions with laterally excitatory and inhibitory components
enforce local continuity and global completeness on the resulting topographic maps. Many
models incorporating these basic assumptions have been proposed and the best of them
are capable of generating patterns of retinal topography, eye dominance and orientation
selectivity which do not differ from the experimental data from macaque monkey in any
currently known detail.

Further progress in the field will depend upon:

(i) obtaining more complete and accurate data sets from the macaque and other species;
(ii) developing new ways of describing cortical structures quantitatively, so that more

detailed comparisons between model output and data can be made;
(iii) revising and extending the models to incorporate knowledge, or experimentally inspired

ideas, about the multiple factors that determine the growth of axons, dendrites and
synapses in the cortex; and

(iv) demonstrating that the models can satisfactorily explain experimental data on inter-
species variability and the effects of environmental manipulation during development.

Extension of the models to the description of different types of surface maps of response
properties currently being revealed in cortical areas such as V2 (Roe and Ts’o 1995,
Gegenfurtneret al 1996), MT (Maloneket al 1994) and infero-temporal cortex (Fujita
et al 1992) promises to provide a major and rewarding challenge to theoreticians.
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Frégnac Y, Shulz D, Thorpe S and Bienenstock E 1988 A cellular analogue of visual cortical plasticityNature
333 367–70

——1992 Cellular analogs of visual cortical epigenesis. I. Plasticity of orientation selectivityJ. Neurosci. 12
1280–300

Friauf E, McConnell S K and Shatz C J 1990 Functional synaptic circuits in the subplate during fetal and early
postnatal development of cat visual cortexJ. Neurosci.10 2601–13
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