
i

NCAR�TN�����IA

NCAR TECHNICAL NOTE

March ����

AN INTRODUCTION TO GENETIC ALGORITHMS

FOR NUMERICAL OPTIMIZATION

Paul Charbonneau

HIGH ALTITUDE OBSERVATORY

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

BOULDER� COLORADO

ii

iii

TABLE OF CONTENTS

List of Figures �v

List of Tables � vii

Preface � ix

	� Introduction
 Optimization

	�	 Optimization and hill climbing �	
	�� The simplex method ��
	�� Iterated simplex �

	�� A set of test problems ��
	�� Performance of the simplex and iterated simplex methods � � � � � � � � 	�

�� Evolution� optimization� and genetic algorithms

��	 Biological evolution � 	

��� The power of cumulative selection � 	�
��� A basic genetic algorithm ��
��� Information transfer in genetic algorithms ��

�� PIKAIA
 A genetic algorithm for numerical optimization

��	 Overview and problem de�nition �

��� Minimal algorithmic components ��
��� Additional components ��
��� A case study
 GA� on P	 ��
��� Hamming walls and creep mutation ��
��� Performance on test problems ��

�� A real application
 orbital elements of binary stars

��	 Binary stars �	
��� Radial velocities and Keplerian orbits ��
��� A genetic algorithm solution using PIKAIA ��

�� Final thoughts and further readings

��	 To cross over or not to cross over� ��
��� Hybrid methods ��

iv

��� When should you use genetic algorithms� ��
��� Further readings ��

Bibliography �	

v

LIST OF FIGURES

	 Operation of a generic hill climbing method ��

� A hard maximization problem ��

� An iterated hill climbing scheme ��

� Absolute performance of the simplex method ��

� Test problem P� 		

� Test problem P� 	�

 Accelerated Norsk learning by means of cumulative selection � � � � � � � � � � ��

� Convergence curves for the sentence learning search problem � � � � � � � � � � �	

� Breeding in genetic algorithms ��

	� Convergence curves for GA� on P	 ��

		 Evolution of the population in parameter space ��

	� Global convergence probability �

	� Radial velocity variations in � Bootis ��

	� Evolution of a typical solution to the binary orbit �tting problem � � � � � � ��

	� �� isocontours in four hyperplanes of parameter space � � � � � � � � � � � � � � �	

vi

vii

LIST OF TABLES

I Simplex performance measures on test problems � 	�

II Performance on test problems
 PIKAIA vs iterated simplex � � � � � � � � � � � � ��

viii

ix

PREFACE

In 	��� I was invited to present a lecture on genetic algorithms at a Mini�
Workshop on Numerical Methods in Astrophysics� held June ��� at the Institute
for Theoretical Astrophysics� in Oslo� Norway� I subsequently prepared a written
version of the lecture in the form of a tutorial introduction to genetic algorithms for
numerical optimization� However� for reasons beyond the organizers� control� the
planned Proceedings of the Workshop were never published� Because the written
version� available through the PIKAIA Web Page since september 	���� continues
to prove popular with users of the PIKAIA software� I decided to �publish� the
paper in the form of the present NCAR Technical Note�

The paper is organized as follows� Section 	 establishes the distinction be�
tween local and global optimization and the meaning of performance measures
in the context of global optimization� Section � introduces the general idea of a
genetic algorithm� as inspired from the biological process of evolution by means of
natural selection� Section � provides a detailed comparison of the performance of
three genetic algorithm�based optimization schemes against iterated hill climbing
using the simplex method� Section � describes in full detail the use of a genetic
algorithm to solve a real data modeling problem� namely the determination of or�
bital elements of a binary star system from observed radial velocities� The paper
closes in section � with re�ections on matters of a somewhat more philosophical
nature� and includes a list of suggested further readings�

I ended up making very few modi�cations to the text originally prepared in
	���� even though if I were to rewrite it now some things undoubtedly would
turn out di�erent� The suite of test functions I now use to test modi�cations to
PIKAIA has evolved signi�cantly from that presented in x� herein� Version 	�� of
PIKAIA� publicly released in April ����� would compare even more favorably to
the iterated simplex method against which PIKAIA ��� is pitted in x� herein� I
updated and expanded the list of further reading �x���� to better re�ect current
topic and trends in the genetic algorithm literature� In addition to some minor
rewording here and there throughout the text� I also restored a Figure to x	� and
a �nal subsection to x�� both originally eliminated to �t within the ���page limit
of the above�mentioned ill�fated Workshop Proceedings�

Back in 	���� I chose to give this paper the �avor of a tutorial� Each section
ends with a summary of important points to remember from that section� You are

x

of course encouraged to remember more than whatever is listed there� You will
also �nd at the end of each section a series of Exercises� Some are easy� others less
so� and some require programming on your part� These are designed to be done
using PIKAIA� a public domain self�contained genetic algorithm�based optimization
subroutine� The source code for PIKAIA �as well as answers to most exercises�
are available on the tutorial Web Page� from which you can also access the PIKAIA

Web Page

http���www�hao�ucar�edu�public�research�si�pikaia�tutorial�html

The Tutorial Page also includes various animations for some of the solutions dis�
cussed in the text� The PIKAIA Web Page contains links to the HAO ftp archive�

from which you can obtain� in addition to the source code for PIKAIA� a User�s
Guide� as well as source codes for the various examples discussed therein� The
idea behind all this is that by the time you are done reading through this paper
and doing the Exercises� you should be in good shape to solve global numerical
optimization problems you might encounter in your own research�

The writing of this preface o�ers a �ne opportunity to thank my friends and
colleagues Viggo Hansteen and Mats Carlsson for their invitation and �nancial sup�
port to attend their 	��� Mini�Workshop on Numerical Methods in Astrophysics�
as well as for their kind hospitality during my extended stay in Norway� The �
CrB data and some source codes for the orbital element �tting problem of x� were
provided by Tim Brown� who was also generous with his time in explaining to me
some of the subtleties of orbital element determinations� Thorough readings of
the 	��� draft of this paper by Sandy and Gene Arnn� Tim Brown� Sarah Gibson�
Barry Knapp and Hardi Peter are also gratefully acknowledged�

Throughout my twelve years working at NCAR�s High Altitude Observatory�
it has been my privilege to interact with a large number of bright and enthusi�
astic students and postdocs� My forays into genetic algorithms have particularly
bene�ted from such collaborators� Since 	���� I have had to keep up in turn with
Ted Kennelly� Sarah Gibson� Hardi Peter� Scott McIntosh� and Travis Metcalfe� I
thank them all for keeping me on my toes all this time�

Paul Charbonneau

March ����� Boulder

�� INTRODUCTION� OPTIMIZATION

��� Optimization and hill climbing

Optimization is something that most readers of this tutorial will have �rst
faced a long time ago in their �rst calculus class� one is given an analytic function
f�x�� and presented with the task of �nding the value of x at which the function
reaches its maximum value� The procedure taught toward this end is �	� di�eren�
tiate the function with respect to x� ��� set the resulting expression to zero� ���
solve for x� call the result xmax� and there you have it�� Even though most of us
would no longer think twice about it� this is actually a pretty neat trick�

For the reader trained in physics the limitation of this analytical method was
encountered perhaps �rst in optics� when studying the di�raction pattern of a sin�
gle vertical slit �e�g�� Jenkins � White 	�
�� chap� 	��� You might recall that the
intensity of the di�raction pattern varies as �sinx�x��� where x is directly propor�
tional to the distance along the direction perpendicular to the slit on the screen on
which the di�raction pattern is projected� The location of the intensity minima
are readily found to be xmin � �n�� with n � 	� �� ��� �n � � is trickier�� How�
ever� calculating the locations of the intensity maxima by the analytical procedure
described above leads to a nasty nonlinear transcendental equation which cannot
be solved algebraically for x� One has to turn to iterative or graphical means
�in the course of which the trickier n � � case of the minima is also resolved��
This di�culty with the di�raction problem is symptomatic of the fact that it is
usually harder �very often much harder� to �nd the zeros of functions than their
extrema� the more so the higher the dimensionality of the said functions �see Press
et al� 	���� x���� for a concise yet lucid discussion of this matter�� The inescapable
conclusion is that once one moves beyond high school calculus min�max problems�
optimization is best carried out numerically�

Upon opening a typical introductory textbook on numerical analysis� one is
almost guaranteed to �nd therein a few optimization methods described in some

� In fact� you also have to di�erentiate the result of step ��� once again� and
verify that the resulting expression is negative when evaluated at xmax� but this
subtlety might have been elaborated upon only in the next lecture���

�

detail� In nearly all cases� those methods will fall under the broad category of hill
climbing schemes� The operation of a generic hill climbing scheme is illustrated
on Figure 	� in the context of maximizing a function of two variables� i�e�� �nding
the maximum �altitude� in a ��D �landscape�� Hill climbing begins by choosing
a starting location in parameter space �panels A!� B!�� One then determines the
local steepest uphill direction� moves a certain distance in that direction �panel
 C!�� re�evaluates the local uphill direction� and so on until a location in parameter
space is arrived at where all surrounding directions are downhill� This marks
the successful completion of the maximization task �panel D!�� Most textbook
optimization methods basically operate in this way� and simply di�er in how they
go about determining the steepest uphill direction� choosing how a big a step is to
be taken in that direction� and whether or not in doing so use is made of gradient
information accumulated in the course of previous steps�

Hill climbing methods work great if faced with unimodal landscapes such as
the one towards which the rabid paratrooper of Fig� 	�A� is about to deposit his
lower backside� Unfortunately� life is not always that simple� Consider instead
the ��D landscape shown on Figure �� the maximum is the narrow central spike
indicated by the arrow� and is surrounded by concentric rings of secondary maxima�
The only way that hill climbing can �nd the true maximum in this case is if our
paratrooper happens to land somewhere on the slopes of the central maximum�
hill climbing from any other landing site will lead to one of the rings� The central
peak covers a fractional surface area of about 	" of the full parameter space
�� � x� y � 	�� Unlike on the landscape of Fig� 	�A�� here the starting point is
critical if hill climbing is to work� Hill climbing is a local optimization strategy�
Figure � o�ers a global optimization problem�

Of course� if the speci�c optimization problem you are working on happens
to be such that you can always come up with a good enough starting guess� then
all you need is local hill�climbing� and you can proceed merrily ever after� But
what if you are in the situation most people �nd themselves in when dealing with
a hard global optimization problem� namely not being in a position to pull a good
starting guess out of your hat�

I know what you�re thinking� If the central peak covers about 	" of parameter
space� it means that you have about one chance in a hundred for a random drop
to land close enough for hill climbing to work� So the question you have to ask
yourself is
 do I feel lucky�� Your answer to this question is embodied in the First

� Well� do you� punk�

�

Figure �� Operation of a generic hill climbing method �allegory�� From a ran�
domly chosen starting point �panel A!�� the direction of maximum slope is followed
�panel C!� until one reaches a point where all surrounding directions are downhill
�panel D!�� Landing �panel B!� is not problematic from the computational point
of view�

�

Figure �� Two dimensional surface f�x� y�� with x� y � �� 	!� de�ning a hard
maximization problem� The global maximum is f�x� y� � 	 at �x� y� � ����� �����
and is indicated by the arrow�

Rule of Global Optimization� also known as

THE DIRTY HARRY RULE

�You should never feel lucky�

Faced with the landscape of Figure � the most straightforward solution lies with
a technique called iterated hill climbing� This is a fancy name for something very
simple� as illustrated on Figure �� You just run your favorite local hill climbing
method repeatedly� each time from a di�erent randomly chosen starting point�
While doing so you keep track of the various maxima so located� and once you
are satis�ed that all maxima have been found you pick the tallest one and you
are done with your global optimization problem� As you might imagine� deciding
when to stop is the crux of this otherwise straightforward procedure�

�

Figure �� An iterated hill�climbing scheme� After landing� each trial proceeds as
on Fig� 	�

�

With a fractional coverage of 	" for the central peak of Figure �� you might
expect to have to run� on average� something of the order of 	�� iterated hill
climbing trials before �nding the central peak� As one is faced with optimization
problems of increasing parameter space dimensionality� and�or situations where
the global maximum spans only a tiny fraction of parameter space� iterated hill
climbing can add up to a lot of work� This leads us naturally to the Second Rule
of Global Optimization� also known as

THE NO FREE LUNCH RULE

�If you really want the global optimum� you will have to work for it�

These considerations also lead us to distinguish between three distinct aspects of
performance� when dealing with a global optimization problem�

�	� Absolute performance� How numerically accurate is the solution returned
by my adopted method�

��� Global performance� How certain can I be that the solution returned by
my method is the true global maximum in parameter space�

��� Relative performance� How much computational work is required by my
method to return a solution�

Most fancy optimization methods you might read about in textbooks are designed
to do as well as possible on �	� and ��� simultaneously� Such methods will do well
on ��� only if provided with a suitable starting guess� If such a guess is consistently
available for the problems you are working on� you need not read any further� But

rest assured that Dirty Harry will catch up with you one of these days�

��� The simplex method

The distinction between local and global optimization� as well as the related
performance issues� are perhaps best appreciated by looking in some detail at the
behavior of a local hill climbing method on a global optimization problem� Toward
this end we retain the ��D landscape of Figure � as a test bed� and attempt to
maximize it using the Simplex Method�

� A di�erent terminology may well be used in optimization textbooks� but you
can be assured that they do discuss something equivalent�

The Simplex Method of Nelder � Mead �	���� is actually a very robust hill
climbing scheme� A brief yet clear introduction to the method can be found in
Press et al� �	���� x	����� A simplex is a geometrical �gure with n�	 vertices� that
lives in a parameter space of dimension n� In ��D space a simplex is a triangle� in
��D space a tetrahedron� and so on� Given the function value �here the �altitude�
f�x� y�� at each of the simplex�s vertices �here an �x� y� point�� the worst vertex is
displaced by having the simplex undergo one of three possible types of �moves��
namely contraction� expansion� or re�ection �see Fig� 	����	 in Press et al��� The
move is executed in a manner such that the function value of the displaced vertex
is increased by the move �in the context of a maximization problem�� The simplex
undergoes successive such moves until no move can be found that leads to further
improvement beyond some preset tolerance� Watching the simplex contract and
expand and squirt around the landscape of Fig� � is good visual fun�� and justi�es
well the name given by Press et al� to their simplex subroutine
 amoeba� This is
the implementation used here�

By the standards of local optimization methods� the simplex passes for a
�slow� method� The absolute accuracy of the solution increases approximately
linearly with the number of simplex moves� However� the simplex can pull itself out
of situations that would defeat or seriously impede faster� �smarter� gradient�based
local methods� it can e�ciently crawl up long �at valleys� and squeeze through

saddle points� In this sense� it can be said to exhibit pseudo�global capabilities�
Evidently the simplex method requires that one provide initial coordinates

�x� y� for the simplex�s three vertices� Despite the simplex method�s pseudo�global
abilities� on a multimodal� global problem the choice of initial location for the
simplex often determines whether the global maximum is ultimately found� Figure
� shows a series of convergence curves for the test problem of Figure �� Each curve
corresponds to a di�erent� random initial simplex con�guration� When the simplex
�nds the central peak� it does so rather quickly� requiring about �� moves for 	���

accuracy� The problem� of course� is that the simplex often does not converge to the
central peak� Repeated trials reveal that the method achieves global convergence
for only �" or so of trials�

��� Iterated Simplex

The prospects of the simplex method for global performance are greatly en�
hanced if one of the starting vertices lies high enough on the slopes of central
peak� This suggests that iterated hill climbing using the simplex method �here�
after iterated simplex� should achieve global performance within a few hundred

� An animation of the simplex at work on the ��D landscape of Figure � can be
viewed on the tutorial Web Page� Check it out�

�

Figure �� Absolute performance of the simplex method on the test problem of
Figure �� Each curve corresponds to a di�erent starting simplex� Failure of the
simplex to locate the central peak leads to the convergence curves leveling o� at
relatively high values of 	�f�x� y�� With � converged runs out of 	� trials� this plot
is not representative of the simplex method�s global performance on this problem�
which is in fact signi�cantly poorer� namely about �"�

iterations� And indeed it does� repeatedly running the simplex ���� times� on the
test problem of Figure � leads to the central peak being located in ����" of tri�
als�� The price to pay of course� is in the number of function evaluations required
to achieve this level of global performance
 nearly 	�� function evaluations per
iterated simplex run� on average�� Welcome back to the No Free Lunch Rule���

� It is recommended practice when using the simplex in single�run mode to
carry out a random restart once the simplex has converged� this entails reinitial�
izing randomly all but one of the converged simplex�s vertices� and letting the
simplex reconverge again� What is described here as iterated simplex consists
in reinitializing all vertices randomly� so as to make each successive trial fully
independent from all others�

� A single simplex move may entail more than one function evaluation� For

�

��� A set of test problems

One should rightfully suspect that the simplex method�s performance on the
test problem of Figure � might not be representative of its performance on other
problems� This very legitimate concern will evidently carry over to the various
genetic algorithm�based optimization schemes discussed further below� It will
therefore prove useful to have available not just one� but a set of test problems� The
four test problems described below are all very hard global optimization problems�

on which most conventional local optimization algorithms would fail miserably�
Also keep in mind that it is always possible to design a test problem that will
defeat any global optimization method��

����� P�� maximizing a function of two variables �� parameters�

Our �rst test problem �hereafter labeled �P	�� is our now familiar ��D landscape
of Figure �� Mathematically� it is de�ned as

f�x� y� � cos��n�r� exp��r����� � �	a�

r� � �x� ����� � �y � ������ x� y � �� 	! � �	b�

where n � � and �� � ��	� are constants� The global maximum is located at
�x� y� � ����� ����� with f�x� y� � 	��� This global maximum is surrounded by
concentric rings of secondary maxima� centered on the global maximum at radial
distances

rmax � f��		�	��� ��������� ��������� �����
��� ��������g � ���

Between these are located another series of concentric rings corresponding to min�
ima

rmin �
m� 	��

n
� m � 	� ���� � ���

The error � associated with a given solution �x� y� can be de�ned as

� � 	� f�x� y� � ���

example if the trial move does not lead to an increase in f � the move might be
repeated with a halved or doubled displacement length �or a di�erent type of move
might be attempted� depending on implementation�� On the maximization prob�
lem of Figure �� one simplex move requires 	�� function evaluations� on average�

� The high�n� high�D version of the fractal function discussed in x��� of B#ack
�	���� is a pretty good candidate for the ultimate killer test problem�

	�

Note that the �peak� corresponding to the global maximum covers a surface area
����n�� in parameter space� If a hill climbing scheme were used� the probability of
a randomly chosen starting point landing close enough to this peak for the method
to locate the true global maximum is only 	" for n � ��

����� P�� maximizing a function of two variables again �� parameters�

Test function P�� shown on Figure �� is again a ��D landscape to be maximized�
It is de�ned by

f�x� y� � ��� exp��r���������� � ���
���� exp��r����������� � ��a�

r�� � �x� ����� � �y � ����� � ��b�

r�� � �x� ����� � �y � ��	�� � ��c�

The maximum f�x� y� � 	 is at �x� y� � ����� ��	�� and corresponds to the peak of
the second� narrower Gaussian� P� is about as hard a global optimization problem
as P	 �the simplex succeeds 	�	 times out of 	�� trials�� but for a di�erent reason�
There are now only two local maxima� with the global maximum again covering
about 	" of parameter space� Unlike P	� where moving toward successively higher
secondary extrema actually brings one closer to the true maximum� with P� mov�
ing to the secondary maximum pulls solutions away from the global maximum�
Problems exhibiting this characteristics are sometimes called �deceptive� in the
optimization literature�

����� P�� maximizing a function of four variables �� parameters�

Test problem P� is a direct generalization of P	 to four independent variables
�w� x� y� z�

f�w� x� y� z� � cos��n�r� exp��r����� � ��a�

r� � �w� ����� � �x� ����� � �y� ����� � �z� ����� � w� x� y� z � �� 	! � ��b�

again with n � � and �� � ��	�� Comparing performance on P	 and P� will
provide a measure of scalability of the method under consideration� namely how
performance degrades as parameter space dimensionality is increased� everything
else being equal� P� is a very hard global optimization problem� the simplex
method manages to �nd the global maximum only � times out of 	�� trials�

����� P�� Minimizing a least squares residual �� parameters�

Our fourth and �nal test problem is de�ned as a �real� nonlinear least squares
�tting problem� Consider a function of one variable �x� de�ned as the sum of two
Gaussians

y�x� �
�X

j��

Aj exp

�
�

�x� xj�
�

��j

�
� �
�

		

Figure �� Test problem P�� The problem consist in maximizing a function of
two variables� de�ned by two Gaussians �see eqs� �!�� The global maximum is
f�x� y� � 	 at �x� y� � ����� ��	�� and is indicated by the arrow�

De�ne now a �dataset� by evaluating this function for a set of K equidistant
values of xk in the interval �� 	!� i�e�� y�k � y�xk�� xk�� � xk � $x� for some set
values of A�� x�� etc� Given that dataset and the functional form used to generate
it �i�e�� eq�
!�� the optimization problem is then to recover the parameter values
for A�� x�� etc originally used to produce the dataset� This is done by minimizing
the square residual

R�A�� x�� ��� A�� x�� ��� �
KX
k��

 y� � y�xk�A�� x�� ��� A�� x�� ���!
� � ���

with respect to the � parameters de�ning the two Gaussians� If one is told a

priori that two Gaussians are to be �t to the data� then this residual minimization
problem is obviously equivalent to a ��D function maximization problem for 	�R
�say�� which simply de�nes a function in ��D space� Figure � shows the dataset
generated using the parameter set

 A�� x�� ��� A�� x�� ��! � ���� ���� ��	� ���� ���� �����! ���

	�

Figure �� Test problem P�� This is a ��parameter problem which consists in
�tting two Gaussians to a �dataset� of �	 points� Note how the second Gaussian
is poorly sampled by the discretization in x� The thin solid line is the underlying
��Gaussian function de�ned by eq� �
��

and K � �	 discretization points in x� Once again the resulting minimization

problem is not an easy one� given the discretization in x� the minimization is
largely dominated by the need to accurately �t the broader� high amplitude �rst
Gaussian� the second Gaussian is not only of much lower amplitude� it is also poorly
sampled in x� Fitting only the �rst Gaussian leads to a reasonably low residual
�R � ������ global accuracy requires the second Gaussian to be also �detected�
and �t� in which case only does R� ��

The simplex succeeds in properly �tting both Gaussians 	�� out of 	�� trials�
What are the �secondary minima� on which the simplex remains stuck� They
can be divided into two broad classes
 �	� one of the model Gaussians �ts the
broad� higher amplitude component� and the other is driven to zero� either by
having A� � or � � �� ��� the method returns a two Gaussians solution� where
x� � x� � ���� �� � �� � ��	� and A� � A� � ���� The ��D parameter space
contains long� �at �valleys� and �plains� of low but suboptimal residual values in
which the simplex grinds to a halt�

	�

Table I

Simplex performance measures on test problems

Test Problem Performance Simplex Iterated simplex

P	 h	� fi ����� ����
��
pG ������ ��	
	

hNf i �
 ��
�
Nt 	 	��

P� h	� fi ��	�� ����	�
pG ������ ��
��

hNf i �� ��	�
Nt 	 	��

P� h	� fi ���	� ���

	�
pG ������� �����

hNf i
� �����
Nt 	 ���

P� hRi ����� ������
pG ����� ��
��

hNf i
�� �
���
Nt 	 ��

��� Performance of the simplex and iterated simplex methods

Table I summarizes the performance of the simplex and iterated simplex meth�
ods on the four test problems� Each entry represents an average over at least 	���
independent runs �up to 	�� for P��� and so should be fairly representative of the
methods� behavior on each test problem� For each problem the Table gives the
absolute performance� de�ned here as the average over all runs of either 	� f�x��
for P	� P� and P�� or the residual R �cf� eq� �!� for P�� The global performance is
de�ned in terms of a probability measure �pG� as the fraction of all runs for which
the true� global extremum has been located �f � ���� for P	� P� and P�� or the
second� smaller Gaussian has been properly �t �R � ��	 for P��� As a measure of
relative performance the table simply lists the average number of function�model
evaluations hNf i required by each method� The last entry for each problem is the
number of trials Nt executed by iterated simplex �this number is 	 by de�nition
for the basic simplex method without restart��

	�

At this stage only a few comments need be made on the basis of Table I�
The �rst is that� as advertised� all four test problems are hard global optimization
problems� as can be judged from the poor global performance of the basic simplex
method on each� Turning to iterated simplex leads to spectacular improvement
in global performance in all cases� but of course the number of required function
evaluations goes up by a few orders of magnitude� In fact the global performance
of iterated simplex can be predicted on the basis of the single�run simplex� The
global performance on the later can be viewed as a probability �p� of locating the
global maximum� the �complementary� probability of a given run not to do so is
	� p� the probability of all iterated simplex runs not �nding the global maximum
is then �	� p�Nt � so that the probability of any one of Nt iterations locating the
global maximum is

pG � 	� �	� p�Nt � Iterated hill climbing! �	��

On the basis of eq� �	�� one would predict global performances ������� ������ ������
����
� on P	 through P�� given the number of hill climbing iterations listed in the
rightmost column of Table 	� which compares quite well with the actual measured
global performance� One can also rewrite eq� �	�� as

Nt �
log�	� pG�

log�	� p�
� Iterated hill climbing! �		�

to predict the expected number of hill climbing iterations required to achieve a
global performance level pG� with p � �� 	��� for P�� requiring pG � ���� would
demand �on average� Nt � ����� hill climbing trials� adding up to a grand total of
about ���� 	�� function evaluations since a single simplex run on P� carries out
on average
� function evaluations �cf� Table 	�� Iterated hill climbing certainly
works� but there really is no such thing as a free lunch���

It is easy to predict the expected global performance of iterated simplex be�
cause each trial proceeds completely independently� The improvement in global
performance simply re�ects the better initial sampling of parameter space associ�
ated with the initial distribution of simplex vertices� Everything else being equal�
as problem dimensionality �n� increases the number of trials Nt required can be
expected to scale as Nt 	 an� where a is some number characterizing in this case
the fraction of parameter space covered by the global maximum� Iterated simplex
is not only demanding in terms of function evaluations� but in addition it does
not scale well at all on a given problem as dimensionality is increased� This� in
fact� is the central problem facing iterated hill climbing in general� not just its
simplex�based incarnation�

	�

The poor scalability of iterated hill climbing stems from the fact that each

trial proceeds independently� The challenge in developing global methods that are
to outperform iterated hill climbing consists in introducing a transfer of informa�
tion between trial solutions� in a manner that continuously �broadcasts� to each
paratrooper in the squadron the topographical information garnered by each in�
dividual paratrooper in the course of his�her local hill climb� The challenge� of
course is to achieve this without overly biasing the ensemble of trials�

A relatively well�known method that often achieves this reliably is simulated
annealing �Metropolis et al� 	���� see also Press et al� 	���� x	����� Simulated
annealing is inspired by the global transfer of energy�information achieved by col�
liding constituent particles of a cooling liquid metal� which allows the substance to
achieve the crystalline�metallic con�guration that minimizes the total energy of
the whole system� The algorithmic implementation of the technique for numerical
optimization requires the speci�cation of a cooling schedule� which is far from triv�
ial
 fast cooling is computationally e�cient �low hNf i� but can lead to convergence
on a secondary extremum �low pG�� while slow cooling improves global convergence
�high pG�� but at the expense of a high hNf i� No Free Lunch� remember���

Genetic Algorithms achieve the same goal� but are inspired by the exchange
of genetic information occurring in a breeding population subjected to natural
selection� They can be used to form the core of very robust� global numerical opti�

mization methods� as detailed in Section � below� The following Section provides
a brief introduction to genetic algorithms in a more general sense�

The least you should remember from Section ��

 Global optimization is a totally di�erent game from local optimization�

 You should never feel lucky�

 There is no such thing as a free lunch�

 You can always design a problem that will defeat any global optimization
method�

Exercises for Section ��

�	� Look back at Figure �� Whenever the simplex fails to achieve global conver�
gence �i�e�� 	 � f � �� it seems to remain stuck at a discrete set of 	 � f
values� What do these values correspond to�

��� Consider again the use of iterated simplex on the test problem of Figure ��
calculate the fractional surface area of the part of the central peak that lies
higher that the innermost ring of secondary maxima� On this basis what

	�

would you predict the required number of simplex trials to be� on average� for
iterated simplex to locate the central peak�

��� Repeat the same analysis as for Exercise ��� above� but in the context of the
P� test problem� Are your results in basic agreement with Table 	� How can
you explain the di�erences �if any��

	

�� EVOLUTION� OPTIMIZATION� AND GENETIC ALGORITHMS

��� Biological evolution

The general ideas of evolution and adaptation predate Charles Darwin�s On the
Origin of Species by Means of Natural Selection �	����� but it is Darwin �and
more or less simultaneously Alfred Russell Wallace� who �rst identi�ed what is still
considered to be the primary driving mechanism of evolution
 natural selection�

Nature is very much oversubscribed� At almost any time in any ecosystem� far
more individuals are born than can possibly survive given the ecosystem�s avail�
able resources� This implies that many members of a given species will die from
attrition or predation before they have a chance to reproduce� The principle of
natural selection states that individuals better adapted to their environment� i�e��
for whatever reason better at obtaining lunch� avoiding becoming lunch� and �nd�
ing�attracting�competing for mates� will� on average� leave behind more o�spring
than their less apt colleagues�

For natural selection to lead to evolution� two more essential ingredients are
required
 �	� inheritance
 o�spring must retain at least some of the features that
made their parents �tter than average� otherwise evolution is e�ectively reset at
every generation� ��� variability
 at any given time individuals of varying �tnesses
must coexist in the population� otherwise natural selection has nothing to operate
on�

Both these additional requirements were plainly obvious to Darwin and his
contemporaries� but their underlying mechanisms remained unexplained in their
lifetime� However� this situation changed rapidly in the early decades of the twen�
tieth century� and the primary processes through which heredity is mediated and
variation maintained are now basically understood� In a nutshell� the information
determining the growth and development of individuals is encoded as linear se�
quences of genes that can each assume a �nite set of �values�� In sexual species�
when two individuals breed� complementary portions of their genetic material are
passed on to their o�spring and combined to de�ne that o�spring�s full genetic
makeup� That�s the inheritance part� In the course of �preprocessing� the genetic
material to be later passed on to o�spring� copy mistakes and truly random alter�
ation of some gene values also occur occasionally� These mutation events� coupled

	�

to the fact that an o�spring receives complementary genes from two parents �which
is true of most animals�� provides the needed source of variability�

The individual that moves� feeds and mates in real space can be looked at as
an outer manifestation of its de�ning genes	� Think then of an individual�s �tness
as a function of the values assumed by its genes� What evolution does is to drive a
gradual increase in average �tness values over the course of many generations� This
is what Darwin called adaptation� Now that�s beginning to sound like hill climbing�
doesn�t it� In fact evolution does not optimize� at least not in the mathematical
sense of the word� Evolution is blind� Evolution does not give a damn about
globally maximal �tness �n�en d%eplaise &a Teilhard de Chardin�� Even if it did�
evolution must accommodate physical constraints associated with development
and growth� so that not all paths are possible in genetic �parameter space�� All
evolution does is produce individuals of above�average �tness� Nonetheless� the
basic ideas of natural selection and inheritance with variation can be used to
construct very robust algorithms for global numerical optimization�

��� The power of cumulative selection

The idea that natural selection can lead to a form of hill climbing in �tness
space may become intuitively obvious��� after thinking about it for a while� What
remains less obvious is the degree to which cumulative selection� i�e�� selection
operating on successive generations� can accelerate what would in its absence be
a random search of genetic parameter space� The following example� popularized
in Richard Dawkins� The Blind Watchmaker �	���� a book well worth reading�
incidentally�� makes for such a nice demonstration of this very point that it has
by now found its way into at least one textbook on evolutionary genetics �May�

nard Smith 	���� an excellent introduction to the topic�� Consider the following
sentence

JEG SNAKKER BARE LITT NORSK

This sentence is �
 characters long including blank spaces� and is made up of
an alphabet of �� letters if a blank character is included �please note that I am

taking into account the famous Scandinavian letters 'A� (� and)�� Consider now

	 This is said without at all denying that a large part of what makes us who we
are arises from learning and other interactions with the environment in the course
of development and growth� what genes encode is some sort of basic behavioral
Bauplan from which these higher level processes take o��

 The original sentence used by Dawkins is METHINK IT IS LIKE A WEASEL�
which� of course� is taken from Shakespeare�s Hamlet�

	�

the process of producing �
�character�long sentences by randomly selecting letters
from the �� available characters of the alphabet� Here�s an example

GE YT�AUMNBGH JH�A QMWCXNES�

Doesn�t look much like the original sentence��� although careful comparison will
show that two letters actually coincide� The total number of distinct �
�character�
long sentences that can be made out of a ���character alphabet is ���� �
����
	��
� This is a very large number� even by astronomical standards� The corre�
sponding probability of generating our �rst� target sentence by this random process
on the �rst trial is then ������� � 	����� This is such a small number that in�
voking the Dirty Harry Rule at this point would be moot� Instead consider the
following procedure

�	� Generate 	� sentences of �
 randomly chosen characters�

��� Select the sentence that has the most correct letters�

��� Duplicate this best sentence ten times�

��� For each such duplicate� randomly replace a few letters���

��� Repeat steps ��� through ��� until the target sentence has been matched�

This search algorithm incorporates the three ingredients mentioned previously as
essential to the evolutionary process� Step ��� is natural selection� in fact in a
deterministic and rather extreme form since the best and only the best acts as
progenitor to the next �generation�� Step ��� is inheritance� again of a rather
extreme form as o�spring start o� as exact replicas of the �single� progenitor�
Step ��� is a stochastic process which provides the required variability� Note also
that the algorithm operates with minimal ��tness� information� all it has available
is how many correct letters a sentence contains� but not which letters are correct or
incorrect� What is still missing is exchange of information between trial solutions�
but be patient� this will come in due time�

Figure
 illustrates the �evolution� of the best�of�	� sentence� starting from
an initial ten random sentences� as described above� The mutation rate was set at
p � ���	� meaning that any given letter has a probability ���	 of being subjected
to random replacement� Iteration count is listed in the leftmost column� and error
in the rightmost column� Error is de�ned here simply as the number of incorrect
letters in the best sentence generated in the course of the current iteration� Note
how the error decreases rather rapidly at �rst� but much more slowly later on� it
takes about as many iterations to get the �rst �� letters right as it takes to get
the last one� The target sentence is found after only �	� iterations� in the course

�� More precisely� de�ne a mutation rate as the probability p �� �� 	!� that a
given constituent letter be randomly replaced�

��

Figure �� Accelerated Norsk learning by means of cumulative selection� Iteration
count is listed in the left column� and the error� de�ned as the number of incorrect
letters� in the rightmost column� The target sentence is found after �	� iterations�

of which �	�� trial sentences were generated and �evaluated� against the target�
This is almost in�nitely less than the � 	��� of enumerative or purely random
search�

Figure � shows convergence curves for three runs starting with the same initial
random sentence� but evolving under di�erent mutation rates� The solid line is
the solution of Figure
� Note how the solution with the highest mutation rate
converges more rapidly at �rst� but eventually levels o� at a �nite� nonzero error
level� What is happening here is that mutations are producing the needed correct
letters as fast as they are destroying currently correct letters� Given an alphabet
size and sentence length� there will always exist a critical mutation rate above
which this will happen���

There are two important things to remember at this point� First� mutation

�� This is in fact a notion central to our understanding of the emergence of
life� Among a variety of self�replicating molecules of di�erent lengths �competing�
for chemical constituents in limited supply in the primaeval soup� those lying
closest to the critical mutation rate can adapt the fastest to an evolving chemical

�	

Figure 	� Convergence curves for the sentence search problem� for three di�erent
mutation rates� The curves show the error associated with the best sentence
produced at each iteration� The solid line corresponds to the solution shown on
Figure
�

is a mixed blessing� It is clearly needed as a source of variability� but too much
of it is de�nitely deleterious� Second� the general shape of the convergence curves
in Figure � is worth noting� Convergence is rather swift at �rst� but then levels
o�� This is a behavior we will meet again and again in what follows� Time now
to move on� �nally� to genetic algorithms�

environment without self�destructing� and so rapidly take over the soup �see� Eigen
	�
	 for a comprehensive though somewhat dated review�� This is conjectured to
be the explanation behind the universality of the genetic code among very nearly
all living organisms�

��

��� A basic genetic algorithm

Fundamentally� genetic algorithms are a class of search techniques that use sim�
pli�ed forms of the biological processes of selection�inheritance�variation� Strictly
speaking they are not optimization methods per se� but can be used to form the
core of a class of robust and �exible methods known as genetic algorithm�based

optimizers�
Let�s go back to a generic optimization problem� One is given a �model� that

depends on a set of parameters u� and a functional relation f�u� that returns
a measure of quality� or �tness� associated with the corresponding model �this
could be a ���type goodness of �t measure if the model is compared to data� for
example�� The optimization task usually consists in �nding the �point� u� in
parameter space corresponding to the model that maximizes the �tness function
f�u�� De�ne now a population as a set of Np realizations of the parameters u� A
top�level view of a basic genetic algorithm is then as follows

�	� Randomly initialize population and evaluate �tness of its members�

��� Breed selected members of current population to produce o�spring population
�selection based on �tness��

��� Replace current population by o�spring population�

��� Evaluate �tness of new population members�

��� Repeat steps ��� through ��� until the �ttest member of the current population
is deemed �t enough�

Were it not that what it being cycled through the iteration is a population of
solutions rather than a single trial solution� this would very much smell of iterated
hill climbing� It should also give you that uncanny feeling of d�ej�a vu� unless your
memory is really shot or� shame on you� you have skipped over the preceding
section� The crucial novelty lies with step �
 Breeding� It is in the course of
breeding that information is passed and exchanged across population members�
How this information transfer takes place is rather peculiar� and merits discussion
in some detail� and not only because this is where genetic algorithms justify the
�genetic� in their name�

Figure � illustrates the breeding process in the context of a simple ��D max�
imization problem� such as the P	 or P� test problems� In this case an individual
is a �x� y� point� and so is �de�ned� by two �oating point numbers� The �rst step
is to encode the two �oating point numbers de�ning each individual selected for
breeding� Here this is done simply by dropping the decimal point and concate�
nating the resulting set of simple decimal integers into a �chromosome��like string
�lines �	��� on Figure ��� Breeding proper is a two step process� The �rst step

��

is crossover� The two strings generated by the encoding process are laid side by
side� and a cutting point is randomly selected along the length of the de�ning
strings� The string fragments located right of the cutting point are then inter�
changed� and spliced onto the fragments originally located left of the cutting point
�lines �
�	�� for a cutting point located between the third and fourth decimal
digit�� The second breeding step is mutation� For each string produced by the
crossover process� a few randomly selected digits �or �genes�� are replaced by a
new� randomly selected digit value �lines 	��	�� for a mutation hitting the tenth
digit of the second o�spring string�� The resulting fragments are then decoded
into two �x� y� pairs� whose �tness is then evaluated� here simply by computing
the function value f�x� y��

Some additional comments are in order� First� note that o�spring incorporate
intact �chunks� of genetic material coming from both parents� that�s the needed
inheritance� as well as the promised exchange of information between trial solu�
tions� However� both the crossover and mutation operations also involve purely
stochastic components� such as the choice of cutting point� site of mutation� and
new value of mutated digit� This is where we get the variability needed to sus�
tain the evolutionary process� as discussed earlier� Second� the encoding�decoding
process illustrated on Figure � is just one of many possible such schemes� Tra�
ditionally� genetic algorithms have made use of binary encoding� but this is often
not particularly advantageous for numerical optimization� The use of a decimal
genetic �alphabet� is no more arti�cial than a binary representation� even more so
given that very nearly all known living organisms encode their genetic information
in a base�� alphabet� In fact� in terms of encoding �oating�point numbers� both
binary and decimal alphabets su�er from signi�cant shortcomings that can a�ect
the performance of the resulting optimization algorithms� Third� the crossover
and mutation operators� operating in conjunction with the encoding�decoding
processes as illustrated on Figure �� preserve the total range in parameter space�
That is� if the �oating�point parameters de�ning parent solutions are restricted to
the range ���� 	��!� then the o�spring solution parameters will also be restricted
to ���� 	��!� This is a very important property� through which one can e�ortlessly
hardwire constraints such as positivity� Fourth� having the mutation operator
act on the encoded form of the parent solution has the interesting consequence
that o�spring can di�er very much or very little from their parents� depending on
whether the digits a�ected by mutation decode into one of the leading or trailing
digits of the corresponding �oating�point number� This means that from the point
of view of parameter space exploration� a genetic algorithm can carry out both
wide exploration and �ne tuning in parallel� Fifth� it takes two parents to pro�
duce �simultaneously� two o�spring� One can of course devise orgiastic breeding
schemes that involve more than two parents and yield any number of o�spring�

��

Figure
� Breeding in genetic algorithms� Here the process is illustrated in the
context of a ��D maximization problem �such as P	 or P� of x	���� An individual is
an �x� y� point� and two such parent individuals are needed for breeding �denoted
P�P	� and P�P�� here�� The one�point crossover and one�point mutation operators
act on string representations of the parents �S�P	� and S�P��� to produce o�spring
strings S�O	� and S�O��� which are �nally decoded into two o�spring �x� y� points
P�O	� and P�O���

Experience shows that this rarely improves the performance of the resulting algo�
rithms� Sixth� f�u� must obviously be computable for all u� but not necessarily

��

di�erentiable since derivatives of the �tness function with respect to its input pa�
rameters are not required for the algorithm to operate� From a practical point of
view� this can be a great advantage�

��� Information transfer in genetic algorithms

Time to step back and revisit the issue of information processing� Genetic
algorithms achieve transfer of information through the breeding of trial solutions
selected on the basis of their �tness� which is why the crossover operator is usually
deemed to be the de�ning feature of genetic algorithms� as compared to other
classes of evolutionary algorithms �see� e�g�� B#ack 	�����

The joint action of crossover and �tness�based selection on a population of
strings encoding trial solutions is to increase the occurrence frequency of sub�

strings that convey their decoded trial solution above�average �tness� at a rate
proportional to di�erence between the average �tness of all trial solutions includ�
ing that substring in their �genotype� �i�e�� the string�encoded version of their
de�ning parameter set�� and the average �tness of the whole population� The
mathematical expression of the preceding mouthful� adequately expanded to take
into account the possibility of substring disruption by crossover or mutation� is
known as the Schema Theorem� and is originally due to Holland �	�
�� see also
Goldberg 	����� As the population evolves in response to breeding and �tness�
based selection� advantageous substrings are continuously sorted and combined by
crossover into single individuals� leading to an inexorable �tness increase in the
population as a whole� Because this involves the concurrent processing of a great
many distinct substrings� Holland dubbed this property intrinsic parallelism� and
argues that therein fundamentally lies the exploratory power of genetic algorithms�

The least you should remember from Section ��

 Natural selection alone cannot lead to evolution� inheritance and variation are
also needed�

 Cumulative selection can accelerate an otherwise random search process by a
factor that is astronomically enormous�

 Genetic Algorithms are search techniques that make use of simpli�ed forms

of the biological selection�inheritance�variation triad�

Exercises for Section ��

All exercises for this part of the tutorial aim at letting you explore quantitatively
the probabilistic aspects of the sentence search example of x����

��

�	� First some basic probability calculations� to warm up� �a� what is the proba�
bility of getting all of the letters wrong on an initial random trial� �b� getting
at least one letter �any letter� right� �c� getting exactly one letter �any letter�
right�

��� In the run of Figure
� it took �
	 iterations to get to the point of having
�� correct letters out of �
� What is now the probability of obtaining a
fully correct sentence in one of the ten mutated copies after the subsequent
iteration� What is the probability of all mutated copies having regressed to
only �� correct letters�

��� Given the sentence length S � �
� alphabet size A � ��� and a mutation
rate p� obtain an estimate �i�e�� not a formal calculation� for the number of
iterations required� on average� to reach zero error� How does your estimate
compare to Figure
� Do you think that Figure
 is a typical solution�

��� Given again a sentence length S� an alphabet size A� and a mutation rate p�
calculate the error level at which the sentence search algorithm will saturate
�like the dotted line on Figure ��� Use this result to estimate an optimal mu�
tation rate as a function of S and A that will� on average� lead to convergence
in the smallest possible number of iterations�

��� In terms of an analogy for biological evolution� what do you think are the
most signi�cant failings of the sentence search example�

�

�� PIKAIA� A GENETIC ALGORITHM

FOR NUMERICAL OPTIMIZATION

��� Overview and problem de
nition

In this section we will be primarily concerned with the comparison of genetic
algorithm�based optimizers with other global optimization schemes� speci�cally
iterated hill climbing using the simplex method �x	���� To do so we �rst need to
settle on a speci�c implementation of a genetic algorithm�

PIKAIA is a public domain� general purpose genetic algorithm�based optimiza�
tion subroutine� It is written in FORTRAN�

� is completely self�contained� and
is designed to be as easy to use as the optimization subroutines found in Press
et al��s Numerical Recipes �for example their simplex routine amoeba�� It comes
with limited I�O capabilities and no fancy graphics� The software is described in
great detail in the User�s Guide to PIKAIA ��� �Charbonneau � Knapp 	����
hereafter PUG�� to which numerous references are made in what follows� The
software and User�s Guide can both be obtained from the PIKAIA Web Page

http���www�hao�ucar�edu�public�research�si�pikaia�tutorial�html

This section opens with a brief overview of the operators and techniques
included in PIKAIA� Internally� PIKAIA seeks to maximize a user�de�ned function
f�x� in a bounded n�dimensional space� i�e��

x � �x�� x�� ���xn� � xk � ���� 	��! �k � �	��

The restriction of parameter values in the range ���� 	��! allows greater �exibility
and portability across problem domains� This� however� implies that the user must
adequately normalize the input parameters of the function to be maximized with
respect to those bounds�

The maximization is carried out on a population made up of Np individuals
�trial solutions�� This population size remains �xed throughout the evolution�
Rather than evolving the population until some tolerance criterion is satis�ed�
PIKAIA carries the evolution over a user�de�ned� preset number of generations Ng�

��

PIKAIA o�ers the user the �exibility to specify a number of other input param�
eters that control the behavior of the underlying genetic algorithm� The subroutine
does include built�in default settings that have proven robust across problem do�
mains� All such input parameters are passed to PIKAIA in the 	��dimensional
control vector ctrl� See Section � of the PUG for the allowed and default values
of those control parameters�

The top�level structure of PIKAIA is the same as the sequence of algorithmic
steps listed in x���
 an outer loop controlling the generational iteration� and an
inner loop controlling breeding� Since breeding involves the production of two

o�spring� the inner loop executes Np�� times per generational iteration� where Np

is the population size �Np � 	�� is the default value��

All parameter values de�ning the individual members of the initial population
are assigned a random number in the range ���� 	��!� extracted from a uniform
distribution of random deviates �see x��� of the PUG�� This ensures that no initial

bias whatsoever is introduced by the initialization�

��� Minimal algorithmic components

����� Selection �PUG	 x����

PIKAIA uses a stochastic selection process to assign to each individual in the pop�
ulation a probability of being selected for breeding� Speci�cally� that probability
is made linearly proportional to the �tness�based rank of each individual within
the current population� This is carried out using a scheme known as the Roulette

Wheel Algorithm� as detailed in x��� of the PUG �see also Davis 	��	� chap� 	��
Note that in general it is not a good idea to make selection probability directly
proportional to �tness value� as this often leads to a loss of selection pressure
late in the evolutionary run� once most population members have �found� the
global optimum� In some cases it can also lead� early on� to a �superindividual�
being selected so frequently that the population becomes degenerate through the
computational equivalent of inbreeding� The proportionality constant between
�tness�based rank and selection probability is speci�ed as an input parameter to
PIKAIA� The default value is 	���

����� Breeding �PUG	 xx��
	 ��� and ����

Once two individuals have been selected� breeding proceeds exactly as in Figure ��
The encoding process requires one to specify the number of digits to be retained
in the encoding process� this is a user�speci�ed quantity� which is set to � in all
calculations reported upon here �this is also the default value in PIKAIA�� Two
additional quantities need to be speci�ed
 �	� the crossover rate� which sets the

��

probability that the crossover operation actually takes place �default is ������ ���
the mutation rate� which sets the probability� for each digit making up the de�ning
string of an o�spring� that a mutation takes place at that digit location �default
is �������

����� Population replacement �PUG	 x����

Under PIKAIA�s default settings the o�spring population is accumulated into tem�
porary storage� and once the number of such o�spring equals that of the current
breeding population the latter is deleted and replaced by the o�spring population�
This is the default strategy used by PIKAIA� although it is possible for the user to
specify other population replacement techniques �see PUG� xx������ �������

��� Additional components

The components listed above de�ne a minimal genetic algorithm� Such an
algorithm can be used for numerical optimization� but as we will soon see� turns
out to be far from optimal� In what follows we refer to this algorithm as GA	���
The following two simple additions to GA	 lead to an algorithm �to be referred to
as GA�� that achieves far better performance on numerical optimization problems�
So much better in fact that the use of these two additional components is the
default choice in PIKAIA���

����� Elitism �PUG	 x��
�

This simply consists in storing away the parameters de�ning the �ttest member
of the current population� and later copying it intact in the o�spring population�
This represents a safeguard against the possibility that crossover and�or mutation
destroy the current best solution� which would have a good chance of unnecessarily
slowing down the optimization process� Elitism in fact becomes essential upon
introducing our second� vital improvement to GA	�

����� Variable mutation rate �PUG	 x������

This one is perhaps the single most important improvement that can �and should��
be made to GA	� As discussed in x���� mutation is very much a mixed blessing�

�� For those of you who might want to run PIKAIA to reproduce the results
below� GA	 is produced by explicitly setting the following elements of PIKAIA�s
control vector ctrl
 ctrl��	
��� ctrl���	
��� and all other elements of ctrl to
negative values to activate default options�
�� This means initializing all elements of the control vector ctrl to negative

values� Note that this sets a population size equal to 	�� �via ctrl��		� and a
number of generations equal to ��� �via ctrl��		�

��

it provides the much needed source of variability through which novel parameter
values are injected into the population� However� it also leads to the destruction of
good solutions� This was precisely the point of Figure � �dotted line�� Finding the
exact value for the mutation rate that achieves optimal balance between those two
e�ects to maximize the former while minimizing the latter is of course possible���
However� in doing so one �nds that the optimal parameter settings often end up
being highly problem dependent���

One powerful solution to this problem is to dynamically adjust the mutation
rate� The key to this strategy lies with recognizing that as long as the population
is broadly distributed in parameter space� the crossover operator leads to a pretty
e�cient �search� as it recombines fragments of existing solutions� However� once
the population has converged �whether on a secondary or absolute optimum�
crossover no longer achieves much� as it leads to the exchange of fragments that
are nearly identical since all parents have nearly identical parameter values� This�
obviously� is where a high mutation rate is needed to reinject variability into the
population�

Consider then the following procedure� At any given time� keep track of the
�tness value of the �ttest population member� and of the median ranked member�
The �tness di�erence $f between those two individuals is clearly a measure of
population convergence� if $f is large the population is presumably distributed
more broadly in parameter space than if $f is very small� Therefore� if $f
becomes too small� increase the mutation rate� if it becomes too large� decrease
the mutation rate again� This is how PIKAIA dynamically adjusts its mutation
rate during run�time� This strategy represents a simple form of self�adaptation of
a parameter controlling the behavior of the underlying genetic algorithm� Further
details and implementation issues are discussed in x��
�� of the PUG�

��� A case study� GA� on P�

It will prove useful to �rst take a detailed look at the behavior of the genetic
algorithm in the context of a simple problem� Figure 	��A� shows ten convergence
curves for GA� working on P	 with Np � ��� What is plotted is one minus the

�� In fact this is often done by letting the mutation rate �and other controlling
parameters of the algorithm� evolve under the control of a second� higher level
genetic algorithm� with �tness being then de�ned as the performance of the genetic
algorithm de�ned by those parameters on the problem under consideration� Pretty
cute but� as you might imagine� rather time consuming�
�� Just as the optimal mutation rate you �hopefully� worked out in Problem �

of x� is rather sensitively dependent on the sentence length and alphabet size�

�	

�tness value of the �ttest individual versus generation count� for 	� separate runs
of GA�� Figure 	��A� should be compared to Figure �� showing the convergence
of the simplex on the same problem� Early on� the curves have qualitatively
similar shapes��� either convergence occurs relatively quickly �much more quickly
for simplex� when it does converge�� or solutions remain �stuck� on one of the
rings of secondary extrema �cf� Fig� ��� which leads to the error leveling o� at a
�xed value� Unlike simplex� however� GA	 is able to pull itself o
 the secondary

extrema rings� It does so primarily through mutation� although crossover between
two parents properly positioned in parameter space can achieve the same e�ect�
Mutation being a fundamentally stochastic process� it is then not surprising to
see di�erent GA� runs requiring di�erent generation counts before the needed
favorable mutation takes place�

Clearly mutation plays a critical role here� Figure 	��B� shows the �tnesses of
the best �solid line� and median�ranked �dashed line� individuals in the population
as a function of generational count� for the GA� run plotted with a thicker line
on panel �A�� The dotted line shows the variation of the mutation rate� Figure 		
shows the distribution of the population in ��D parameter space��� at the epochs

indicated by solid dots on Fig� 	��B��

To start with� note on Fig� 		�A� that no individual in the initial random
population has landed anywhere close enough to the central peak for hill climbing
to work� The �rst few generational iterations see the population cluster itself closer
and closer to center �Fig� 		 B!�� but the �tness di�erence between best and median
is still quite large� The mutation decreases slightly from its initial �low� value� but
then remains constant� By the 	�thgeneration �Fig� 		 C!� most of the population
has converged somewhere on the inner ring of secondary extrema �f � ����	���
so that the �tnesses of the best and median are now comparable� This leads to a
sharp increase of the mutation rate �between the 	�thand ��thgenerations�� The
high mutation rate results in o�spring being knocked all over parameter space
in the course of breeding �Fig� 		 D!�� While some mutant individuals do land
regularly on the slope of the central peak� it is only by the ��thgeneration that
one such mutant is catapulted high enough to become the �ttest of the current
population �Fig� 		 E!�� Further breeding during subsequent generations brings
more and more individuals to the central peak and further increases in �tness of

�� You might notice that GA� already starts o� doing signi�cantly better than
the simplex method� this merely results from the initial random population of
GA� having �sampled� �� points in parameter space� compared to only � for the
simplex�
�� An animation of the evolving population for this solution can be viewed on

the Tutorial Web Page�

��

Figure ��� Panel �A� shows convergence curves for 	� distinct runs of GA� on
P	� As before the error is de�ned as 	�f�x� y�� Panel �B� shows� for the single run
plotted with a thicker line on panel �A�� the variations with generation count of the
best individual of the population �solid line�� median�ranked individual �dashed
line�� and mutation rate �dotted line��

��

Figure ��� Evolution of the population of trial solutions in parameter space� for
the GA� run shown as a thicker line on Fig� 	�� The concentric circles indicate the
rings of secondary maxima� and the larger� solid black dot is the �ttest solution of
the current generation�

��

the current best via both crossover and mutation �Fig� 		 F!�� Note how elitism is
essential here� otherwise the �mutant� having landed on the slopes of the central
peak would have a low likelihood of replicating itself intact into the subsequent
generation� in view of the high mutation rate�

GA	 basically behaves in exactly the same way� with the important exception
that many more generations are needed for the favorable mutation to show up�
this is because GA	 operates with a �xed� low mutation rate� while GA� lets this
rate vary depending on the degree of convergence of the population �cf� x�������

��� Hamming walls and creep mutation

We are doing pretty well with GA�� but we still need to correct a fundamental
shortcoming of the one�point mutation operator arising from the decimal encoding
scheme of Fig� �� Consider a problem where the sought�after optimal solution
requires the following substring to be produced by the evolutionary process

��������������������������

decoding into the �oating point number ��	���� now� early in the evolutionary run
an individual having� say�

��������������
����������

will likely be �tter than average� and so this genetic material will spread through�
out the population� After a while� following favorable mutations or crossover
recombinations� the substring might look like� say

�������������������������

which is admittedly quite close to ������ However� two very well coordinated
mutations are needed to push this towards the target �����
 the ��� must mutate
to a ��� and the �rst ��� to a ���� Note that either mutation occurring in isolation�
and�or mutating to a di�erent digit value� takes us farther from the target �oating
point number� Mutation being a slow process� the probability of the needed pair
of mutations occurring simultaneously will in general be quite small� meaning that
the evolution would have to be pushed over many generations for it to happen� The
population is getting �piled up� at internal boundaries of the encoding system�

These boundaries are called Hamming walls� They can be bypassed by choos�
ing an encoding scheme such that successive single mutations can always lead to a
continuous variation in the decoded parameter� This is why the so�called Gray bi�
nary coding �e�g�� Press et al� 	���� x����� is now used almost universally in genetic
algorithms based on binary encoding� Another possibility is to devise mutation
operators that can jump over Hamming walls�

��

Creep mutation does precisely this� Once a digit on the encoding string has
been targeted for mutation� instead of simply replacing the existing digit by a
randomly chosen one� just add either �	 or �	 �with equal probability�� and if
the resulting digit is 	 � �because a ��� has been hit with ��	�� or
 � �because
a ��� has been hit with ��	��� carry the one over to the next digit on the left�
Just like in grade school� So� for example� creep mutation hitting the middle ���
with �	 in the last substring above would lead to

�������������������������

which achieves the desired e�ect of �jumping� the wall�

The one thing creep mutation does not allow is to take large jumps in parame�
ter space� As argued before� jumping is actually a needed capability� consequently�
in practice for each o�spring individual a probability test will decide whether one�
point or creep mutation is to be used �with equal probabilities��

Creep mutation is not included in the original release of PIKAIA �now known
as PIKAIA ���� although it is in version ���� which has been released in April
���� �see the PIKAIA Web Page and the Release Notes for PIKAIA ���� NCAR
Technical Note ��	�STR�� The results described in what follows were obtained
using a modi�ed version of PIKAIA ���� GA�� which includes creep mutation but
is otherwise identical to GA��

��� Performance on test problems

Time now to turn loose our algorithms on the suite of test problems of x	���
We have three versions of genetic algorithm�based optimizers
 GA	� which rep�
resents a minimal algorithm� and GA�� which is identical to GA	 but includes in
addition elitism and dynamic adjustment of the mutation rate� and GA�� includ�
ing creep mutation but otherwise identical to GA�� As a comparison algorithm
we retain iterated hill climbing using the simplex method� as described in x	��� As
will soon become evident� GA	 is actually not a very good optimizer� so that the
more interesting comparison will be among GA�� GA�� and iterated simplex�

Before getting too carried away let�s pause and re�ect on what we are trying to
achieve here� Ideally� one wants a method that achieves convergence to the global
optimum with high probability �pG �
 ����� say�� while requiring the smallest
possible number of model �or function� evaluations in doing so� This latter point
can become a dominant constraint when dealing with a real application� where
evaluating the ��tness� of a given trial solution is computationally intensive�	�

�	 Consider the helioseismic inversions described in Charbonneau et al� �	����
using a genetic algorithm� given a set of parameters de�ning a trial solution� �tness

��

Such considerations are easily quanti�ed� Let Np and Ng be the population
size and generation length of a run� the required number of function evaluations�
Nf � is obviously

Nf � Np �Ng � GA	� GA�� GA�! �	�a�

while for iterated simplex Nf is the number of hill climbing trials �Nt� times the
average number of function evaluations required by a single simplex run �Ns� this
quantity is run� and problem�dependent�

Nf � Nt �Ns � Iterated simplex! �	�b�

So we play the following game
 we run iterated simplex and GA� for increas�
ing numbers of generations�iterations� and check whether global convergence is
achieved� to get statistically meaningful results we do this 	��� times for each
method and each generation�iteration count� This allows us to empirically estab�
lish the probability of global convergence �pG� � �� 	!� as a function of genera�
tion�iteration count� In doing so� to decide whether or not a given run has globally
converged we use again the criteria f � ���� for P	� P� and P�� and R � ��	 for
P�� The results of this procedure� applied to each test problem� is shown in Figure
	��

It should be easy to convince yourself of the following
 �	� on P	 and P��
both iterated simplex and GA� perform equally well on all aspects of performance
when pushed long enough to have pG �
 ���� ��� P� is a hard problem� and neither
technique performs satisfactorily on it� Still� GA� largely outperforms iterated
simplex on global performance� ��� On P�� GA� and iterated simplex do equally
well up to pG � ���� but then GA��s performance starts to lag behind as the
solutions are pushed to pG �
 �����

An obvious conclusion to be drawn at this juncture is that iterated hill
climbing using the simplex method makes for a pretty decent global optimiza�
tion scheme� Not quite what you were expecting as a sales pitch for genetic

algorithm�based optimization� right� This is in part a consequence of the rel�
atively low dimensionality of our test problems� Recall from x	�� that iterated
simplex leads to improved performance �with respect to single run simplex� pri�
marily as a consequence of the better sampling of parameter space associated with
the initial �random� distribution of simplex vertices� given enough trials� one is
almost guaranteed to have one initial simplex vertex landing close enough to the

evaluation involves �	� the construction of a ��D rotation curve� ��� a large matrix�
vector multiplication� ��� the calculation of a �� against some ��� data points�
This adds up to about half a CPU�second on a Cray J��� All test problems of x	��
require very little computation in comparison�

�

Figure ��� Global convergence probability as a function of the number of function
evaluations Nf required by iterated simplex �diamonds� and GA� �solid dots� on
the four test problem �P	
 dotted line� P�
 dashed line� P�
 solid line� P�
 dash�
dotted line�� The probabilities were estimated from 	��� distinct trials and� in the
case of iterated simplex� Nf is an average over the 	��� trials�

global maximum to ensure subsequent global convergence� In low dimensional
search spaces� iterated simplex thus ends up being quite competitive� Figure 	�
already indicates that this �edge� does not carry over to higher dimensionality
�compare results for P	 and P���

GA��s performance on P� is actually a delicate matter� Take another look
at Figure � and consider what happens once the population has converged to the
broad� secondary maximum �as it does early in the run for nearly every single
trial�� for mutation to propel a solution from �x� y� � ����� ���� to the narrow peak
�x� y� � ����� ��	�� two very well coordinated mutations must take place simul�
taneously� otherwise mutant solutions end up in regions of rather low elevations
and do not contribute much to the next generation� This is a low probability

occurrence even at relatively high mutation rates�
� so the process takes time�
GA��s global performance on P� then results from an interplay between one�point

�
 Notice on Figure 		�D���F� how few solutions show up in the corners of the

��

mutation and the rather direct relationship that exists here between a solution�s
de�ning parameters and its string representation� on which mutation and crossover
operate� If the narrow Gaussian is centered on �x� y� � ����� ����� then a single
mutation can propel a solution from the broad� central Gaussian to the narrow
one� Not surprisingly� on this modi�ed problem GA� outperforms iterated sim�
plex to a signi�cant degree
 pG � ����
 with only Nf � ����� i�e�� faster than
iterated simplex by a factor of �� Encoding is a tricky business� with potentially
far�reaching consequences on performance�

Iterated simplex�s superior performance on P� is certainly noteworthy� yet
re�ects in part the peculiar structure of parameter space de�ned by the Gaussian
�tting problem� which is relatively well accommodated by the simplex method�s
pseudo�global capabilities� Other local optimization methods do not fare nearly
as well� For a detailed comparison of genetic algorithms and other methods on
�tting Gaussian pro�les to real and synthetic data� see McIntosh et al� �	�����

It is really only with very hard problems� such as P�� that GA� starts showing
its worth� By any standards� P� is a very hard global optimization problem� While
on its ��D version GA� and iterated simplex do about as well� as dimensionality is
increased the global performance of iterated simplex degrades much more rapidly
than GA�� This is in fact where the power of genetic algorithm�based optimizers
lies� although for search spaces of high dimensionality �n �
 ��� say� the one�point
crossover and mutation operators described in x��� are usually suboptimal and
must be improved upon���

In some sense� a fairer comparison of the respective exploratory capabilities
of GA� and iterated simplex can be carried out by setting the number of trials
in iterated simplex so that the original distribution of simplex vertices samples
parameter space with the same density as GA��s initial random population� in
other words� using the notation of eqs� �	��� we set

Nt � Np��n � 	� � �	��

where n is the dimensionality of parameter space� and compare the results of the
resulting iterated simplex runs to some �standard� GA� and GA� runs� Such a
comparison is presented in Table II� in a format essentially identical to Table I�
Performance measures are also listed for a set of GA	 runs extending over the

domain�
�� PIKAIA ���� to be released in April ����� includes a two�point crossover op�

erator� which generally improves performance for problems involving many pa�
rameters� See� e�g�� Section � of the Release Notes for PIKAIA ��� �Charbonneau
������

��

Table II

Performance on test problems �with eq� �	�� enforced�

Test ProblemPerformance Iter� Simplex GA	 GA� GA�

P	 h	� fi �����
	 ���
�� ����
	 ������
pG ����� ����
 ��
�� ��
��

hNf i �
	 ���� ���� ����
Nt or Ng 	
 	�� 	�� 	��

P� h	� fi ��		��� ��	��	 ����	� ������
pG ����� ����	 ��		� ��	��

hNf i
�� ���� ���� ����
Nt or Ng 	
 	�� 	�� 	��

P� h	� fi ��	���
 ��	�� ������ ����	�
pG 	������ ����� ���
� �����

hNf i
�
 ����� ����� �����
Nt or Ng 	� ��� 	��� 	���

P� hRi ����	� ��	�� ����� ���
�
pG ����
 ����
 ��	�� ���
	

hNf i ���� ����� ����� �����
Nt or Ng
 	��� 	��� 	���

same number of generations as the GA� and GA� runs� Once again performance
measures are established on the basis of 	��� distinct runs for each method�

Evidently GA� and GA� outperform GA	 on all aspects of performance to a
staggering degree� GA	 is not much of a global numerical optimization algorithm�
Comparison with Table I shows that its global performance exceeds somewhat that
of the simplex method in single�run mode� but the number of function evaluations
required by GA	 to achieve this is orders of magnitude larger�

What is also plainly evident on Table II is the degree to which GA� and GA�
outperform iterated simplex for a given level of initial sampling of parameter space�
Although the number of function evaluations required is typically an order of
magnitude larger� both algorithms are far better than iterated simplex at actively
exploring parameter space� This is plain evidence for the positive e
ects of transfer

of information between trial solutions in the course of the search process�

The worth of creep mutation can be ascertained by comparing the global

��

performance of the GA� and GA� solutions� The results are not clear�cut
 GA�
does better than GA� on P	 and P�� a little worse on P�� and signi�cantly worse
on P�� The usefulness of creep mutation is contingent on there actually being
Hamming walls in the vicinity of the global solution� if there are� creep mutation
helps� sometimes quite a bit� Otherwise� it e�ectively decreases the probability of
taking large jumps in parameter space� and so can be deleterious in some cases�
This is what is happening here with P�� where moving away from the secondary
maximum requires a large jump in parameter space to take place� from �x� y� �
����� ���� to ����� ��	��

At any rate� the above discussion amply illustrates the degree to which global

performance is problem�dependent� This cannot be overemphasized� You should
certainly beware of any empirical comparisons between various global optimization
methods that rely on a small set of test problems� especially of low dimensional�
ity� You should also keep in mind that GA� is one speci�c instance of a genetic
algorithm�based optimizer� and that other incarnations may behave di�erently
�either better or worse� on the same test problems�

The least you should remember from Section ��

 Through random initialization of the population� genetic algorithms introduce
no initial bias whatsoever in the search process�

 For numerical optimization� elitism and an adjustable mutation rate are two
crucial additions to a basic genetic algorithm�

 Iterated hill climbing using the simplex method makes a pretty decent global
optimization technique� especially for low�dimensionality problems�

 Performance measures of any global optimization method are highly problem�
dependent�

Exercises for Section ��

�	� Look back at Figure 	�� The dynamically adjusting mutation rate levels o�
at a value of about ��	� One could have predicted this average value before
running the code� How� �Hint
 re�read x����

��� Code up a ��D� ��D and ��D version of P	� Using PIKAIA in its GA� form
�default settings except for generation count�� investigate how global perfor�
mance degrades with problem dimensionality� Keep the generation count �xed
at ���� �ctrl��	
������ How does this compare to iterated simplex�

�	

�� A REAL APPLICATION�

ORBITAL ELEMENTS OF BINARY STARS

��� Binary stars

More than half of all stars observed in the solar neighborhood are components
of binary systems� This is presumed to be a consequence of angular momentum
conservation leading to fragmentation in the later stages of collapse of protostellar
clouds� Some binary stars can be resolved optically with even a small telescope� the
�rst such visual binary system was discovered in 	��� by G�B� Riccioli� Binarity
can also be established spectroscopically� by measuring the small Doppler shift in
narrow spectral lines caused by the component V along the line�of�sight of the
orbital velocity about the system�s center of mass� For non�relativistic orbital
speeds the wavelength shift is

$�

�
�

V

c
� �	��

where c is the speed of light� The �rst such spectroscopic binary was discovered
in 	��� by E�C� Pickering��� Current hardware and analysis techniques now allow
us to measure stellar radial velocity with useful accuracy down to ��� meters per

second��� This level of accuracy is what has made possible the recent spectacular
discovery of extrasolar planets� Figure 	� shows radial velocity measurements of
the star � Bootis� a �classical� spectroscopic binary star� From these data one can
determine the orbital parameters of the system�

�� Amusingly� this spectroscopic binary is the brighter component of the �rst
visual binary discovered by Riccioli
 the star Mizar A� in the constellation Ursa

Majoris� Even better� it was later realized that Mizar B is also a spectroscopic
binary�
�� This �gure is for ����� back in 	���� when this paper was originally written�

it was given as 	� m s��� Pretty remarkable improvement� in just a little over
three years���

��

Figure ��� Radial velocity variation observed in the spectroscopically visible
component of the binary star � Bootis� The time axis is given in units of Julian
Date �one JD � one solar day�� Data are from Bertiau �	��
�� with one lone
datum at JD� ��	
� missing on this plot� The solid line is the best��t solution
obtained later in this section� The asymmetrical shape of the curve is due to the
eccentricity of the orbit� a circular orbit would lead to a purely sinusoidal radial
velocity variation�

��� Radial velocities and Keplerian orbits

If the shape and size of an orbit are known� as well as the orientation of its semi�
major axis with respect to the line of sight� the expected radial velocity variations
can be computed and compared to observations� There are actually a few subtleties
involved� Determining the radial velocity variation associated with the motion of
a binary component in an arbitrarily positioned elliptical orbit about the common
center of mass of the system is a straightforward but somewhat messy problem in
spherical trigonometry� The procedure is laid out in great gory details in many
astronomical monographs �see� e�g�� Smart 	�
	�� We shall simply write down the
resulting expression here

V �t� � V� � K�cos�� � v�t�� � e cos���� � �	��

��

The quantity V� is the radial velocity of the binary system�s center of mass� and
eq� �	�� only holds once the Earths� orbital motion about the Sun as been sub�
tracted out� Note that the quantity V� cannot be simply �read o�� the radial
velocity curve� unless the orbit is perfectly circular� The velocity amplitude K is
a function of other orbital parameters

K �
��

P

a sin i

�	� e�����
� �	
�

where P is the orbital period� e the orbital eccentricity� a the semi�major orbital
axis� and i the inclination angle of the orbital plane with respect to the plane of
the sky �i � � is an orbit in the plane of the sky� i � ��� an orbit seen edge�on��
Because i usually cannot be inferred from the velocity curve �unless the system
happens to also be an eclipsing binary�� the velocity amplitude K is usually treated
as a single parameter� The so�called true anomaly v is the time�like variable� and
corresponds to the angle between a radius vector joining the star to the center�of�
mass and that joining the orbital perihelion to the center�of�mass� The longitude
of the perihelion ��� is the angle subtended by the latter line segment to the line
segment de�ned by the intersection of the orbital plane with the plane of the sky
�see Smart 	�
	� x	�� and Figure 	����

The chief complication arises from the fact that for an elliptical orbit the an�
gular velocity about the center of mass is not constant� but obeys instead Kepler�s
second Law �orbital radius vector sweeps equal areas in equal time intervals�� The
true anomaly v is related to the so�called eccentric anomaly E via the relation

tan
v

�
�

r
	 � e

	� e
tan

E

�
� �	��

The eccentric anomaly� in turn� is related to time via Kepler�s equation �see Smart
	�
	� x���

E � e sin�E� �
��

P
�t�
� � �	��

where
 is the time of perihelion passage� by convention the zero�point of the orbit�
At the risk of oversimplifying� in essence what E measures is the deviation from
constant angular velocity �as in a circular orbit� due to the orbit�s eccentricity�
Note that eq� �	�� is transcendental in E� i�e�� it cannot be solved analytically for
E as a function of t� Of course it can be solved using any of the classical methods
for nonlinear root �nding� such as bisection �Press et al� 	���� x��	�� Kepler� of
course� did it all by hand�

Going over the preceding expressions� one can identify � parameters that need
to be determined to relate the radial velocity curve to the orbital elements and
related quantities� These six parameters are

��

�	� P � the orbital period�

���
 � the time of perihelion passage�

��� �� the longitude of the perihelion�

��� e� the orbital eccentricity�

��� K� the orbital velocity amplitude�

��� V�� the system�s radial velocity�

For later use we will group these six parameters into a vector

u � �P�
� �� e�K� V�� � ����

A number of methods have been devised to infer these parameters from a given
radial velocity curve �see� e�g�� Smart 	�
	� x	�
� Petrie 	����� In what follows
we treat this �tting problem as a nonlinear least�squares minimization problem�
We seek to �nd the parameter set u that minimize the reduced �� given N data
points V obs

j � V �tj� with associated error estimates �j

���u� �
	

N � �

N��X
j��

�
V obs
j � V �tj �u�

�j

��

� ��	�

where the normalization factor �N � ���� is the number of degrees of freedoms of
the �t� under this normalization �� �	 	 indicates an acceptable �t�

The minimization problem de�ned by eq� ��	� can �and will� be solved
using a genetic algorithm�based optimizer� speci�cally GA��s version of PIKAIA�
At this stage you should perhaps only note that performing this minimization
using an explicitly gradient�based method would be a real mess� If you need to
be convinced of this try di�erentiating eq� �	�� with respect to e� and see how you
like it��� This� however� is not the only di�culty one encounters in carrying out the
�t� The most serious problem is related to the existence of solution degeneracies�
i�e�� widely di�ering sets of �tting parameters that lead to very similar radial
velocity curves� for some classes of orbits� This can become a severe problem for
noisy and�or poorly sampled radial velocity curves� the search space then becomes
markedly multimodal in ��� and a global method is essential� The � Bootis data
of Fig� 	� o�ers a moderately di�cult global optimization problem� So let�s give
it a go using PIKAIA�

��

��� A genetic algorithm solution using PIKAIA

����� Normalization of input parameters

Since PIKAIA operates internally in a search space bound in �� 	! in all dimensions�
the �rst thing to do is to normalize the components of the parameter vector u�
Reasonable choices would be

P � u�	� ��� � P � ��� in JD� from data!

 � u��� t� �
 � t� � P in JD!
� � u��� � � � � �� radian� full allowed range!
e � u��� � � e � 	 dimensionless� full allowed range!
K � u��� � � K � max�V �

j ��min�V �

J � km s��� from data!
V� � u��� min�V �

j � � V� � max�V �

j � km s��� from data!

You might think that some of these bounds could be signi�cantly reduced by even
casual examination of the data �P � for example�� while this might well be the case
and would likely accelerate convergence� it is de�nitely not recommended practice
in general� One of the great advantage of genetic algorithms is the complete lack of
initial bias they introduce in the search process� in view of the fully random nature
of the initial population �cf� x��	�� The last thing you want to do is reintroduce a
bias by overly constraining the parameter ranges to be explored� Whenever �rm
physical or mathematical bounds exist� use them� This is what is done here� The
eccentricity e and perihelion longitude � are both by de�nition bound to �� 	! and
 �� ��!� respectively� For a priori unbounded variables� use the data to establish
bounds that are as wide as reasonable� while remaining physically meaningful� For
example� in view of eq� �	�� it should be clear that V� must be bound between the
smallest and largest velocity values occurring in the dataset� and that K cannot

exceed the data�s peak�to�peak spread �although it might be wise to extend these
bounds by some small amount if the radial velocity curve is very noisy or poorly
sampled by the data��� Note that the encoding process allows us to use some
parameter values to set meaningful bounds on other parameters� this is done here
for the time of perihelion passage
 � which cannot exceed a time interval equal to
the orbital period�

����� De�ning �tness

Fitness is the only point of contact between the genetic algorithm and the prob�
lem being solved� Because time is determined much more accurately than ob�
served radial velocities� the natural quantity to use here is the usual �� measure
of goodness�of��t �cf� eq� �	!�� though of course other statistical estimators can
be used�

��

Given a trial solution� as de�ned by a ��vector u� computing a �� requires the
construction of a synthetic radial velocity curve evaluated at the N data abcissa
tj � Once the input parameters have been properly rescaled �x����	�� for each of
the tj �s� the steps involved are

�	� Given a tj and trial period P � eccentricity e� and time of perihelion passage

 � solve Kepler�s equation �	�� for E� This de�nes a nonlinear root �nding
problem for which the bisection method is well�suited�

��� Now knowing E� calculate the true anomaly v using equation �	���

��� Now knowing v� and given the trial velocity amplitude K� system velocity
V� and perihelion longitude �� compute the radial velocity V using equation
�	���

��� Once V has been computed for all tj � calculate �� using equation ��	��

One �nal step is required� to relate �� to �tness� in order to set the selection
probability of the trial solution� PIKAIA is set up to maximize the user�de�ned
function� and requires �tness to be a positive de�nite quantity� We thus set

Fitness � ������ � ����

Because PIKAIA uses ranking to set selection probability� you need not worry about
the functional form you impose between �tness and ��� making �tness proportional
to �������� �say� would lead to the same rank distribution� and so to the same
selection probabilities� Naturally you�d better make sure that the relationship you
de�ne between �tness and goodness�of��t is single�valued and monotonic� Oth�
erwise you can�t expect PIKAIA to produce anything sensible� Please do not set
�tness equal to ���� as PIKAIA�s implementation of the Roulette Wheel Algo�

rithm for parent selection requires �tness to be a positive�de�nite quantity� This
has been a common initial mistake for PIKAIA users attempting �� minimization�

����� Setting PIKAIA�s internal parameters

Unless you have good reasons to do otherwise� use PIKAIA�s default parameter
settings� This is done by initializing all twelve elements of the control vector ctrl
to some nonzero negative value� and will result in what we have been calling GA��
The one parameter you most likely want to set explicitly is the generation count
Ng� This corresponds to the second element of the control vector� so that for
example setting ctrl��� � ���� would force PIKAIA to run for ���� generations�
instead of its default value of ���� As you hopefully have �gured out by now� the
required number of generations is very much problem�dependent� Just be sure to
remember the Dirty Harry Rule� if you�re not sure how to set Ng� err on the high
side�

�

����� Running PIKAIA

The �rst thing to do is to write a FORTRAN function that is given a trial solution
parameter vector u� and returns a �tness� This is really the only interface between
PIKAIA and the problem at hand� The argument speci�cation of the function are
hardwired into PIKAIA� so that the beginning of the function must look like

real function orbit�n�x	

dimension x�n	

where n is the dimension of parameter space and x�n	 is a vector of n �oating point
numbers de�ning a trial solution� Of course the function�s name� here orbit� can
be whatever you like� but do declare it external in the calling program� For the
orbital element �tting problem we have n� �� The function itself basically goes
through the sequence of steps listed in x����� to compute a ��� which is then used
to de�ne a �tness as per eq� �����

One important thing relates to the scaling of the input parameters� The
scaled versions of the x�n	�s �cf� x����	� must be stored in new variables local to
the �tness function� Storing the rescaled parameters back into the x�n	�s� i�e��

x��	
�����x��	����� �����NEVER DO THIS�����!

is guaranteed to have disastrous consequences �besides being poor programming
style�� This has also been a relatively common initial mistake of PIKAIA users so
far�

Prior to calling PIKAIA itself three things need to be done
 �	� Read the
time and radial velocity data and making them accessible to the �tness function
through an appropriately de�ned COMMON block �for example�� ��� initialize the
random number generator��� and ��� initialize PIKAIA�s control vector� The last
two steps are carried out as follows

seed
��
���

call urand�init�seed	

do i
����

ctrl�i	
��

enddo

You can of course pick any seed value other than 	������ as long as it is a nonzero
positive integer� Initializing all components of ctrl to some negative value� as
done here� forces PIKAIA to use its internal default settings� This yields GA��

�� PIKAIA is distributed with a random number generator which is deterministic�
meaning that it must be given a seed value� from which it will always produce the
same sequence of random deviates �on a given platform��

��

evolving a population of Np � 	�� individuals over Ng � ��� generations� For
other possible settings �and their algorithmic consequences� see x��� of the PUG�
With the �tness function de�ned as described above� a call to PIKAIA looks like

call pikaia�orbit�n�ctrl�xb�fb�status	

Upon successful termination �indicated by status� � on output�� the n�dimensional
array xb contains the parameters �scaled to �� 	!� of the best trial solution of the
last generation� and its �tness is given by the scalar output variable fb� By default
this is the only output returned by PIKAIA� although additional run�time output
can be produced by appropriately setting ctrl���	 to 	 or � �see PUG� x�����

����
 Results

Figure 	� shows results for a typical GA� run� Part �A� shows convergence curves�
namely the �� value for the best �solid line� and median �dashed line� individual as
a function of generation count� Part �B� shows the corresponding variations of the
six parameters de�ning the best solution �scaled to �� 	!�� Most parameters un�
dergo rapid variations over the �rst ten generational iterations� but subsequently
tend to remain pretty stable until favorable mutations or crossover produce better
individuals� The �rst such �key� mutation occurs at generation 	��� when a period
close enough to the true period is �nally produced� Note how the solution then
remains �stuck� on a e � � secondary minimum up to generation ���� The subse�
quent evolution is characterized by a gradual increase in e� � and
 � accompanied
by smaller adjustments in K and V�� Notice again on Fig� 	��A� how� especially in
the �rst few hundred generations� the mutation rate �dotted line� is highest when
the best solution is �stable�� and decreases again following signi�cant changes in
best �tness�

The �nal� best solution vector after 	��� generations is

�P�
� �� e�K� V�� � �������� 	������� ������� �������� ������� 	������ � ����

with units as in x����	� This best��t GA� solution� with �� � 	���� is plotted as a
solid line on Fig� 	�� It turns out that for this problem the use of creep mutation
is advantageous� as detailed in the following section� The best��t solution di�ers
slightly from the best��t solution of Bertiau �	��
�� but lies well within Bertiau�s
one�� range� The fact that the solution has a �� signi�cantly larger than 	 should
not be deemed extremely alarming� as error estimates on V given in Bertiau �	��
�
are based in part on a subjective assessment of the �quality� of his photographic
plates�

��

Figure ��� Evolution of a typical solution to the binary orbit �tting problem�
Part �A� shows the �� �inversely proportional to �tness� of the best and median
individuals in the population� as well as the mutation rate �dotted line�� Part
�B� shows the corresponding variations of the six parameters de�ning the best
individual �scaled to �� 	!��

��

����� Error estimates

You might think we�re done� but we certainly are not� our allegedly global solution
of x����� is almost worthless until we can specify error bars of some sort on the
best �t model parameters�

The traditional way derivative�based local hill climbing methods compute er�
ror bars �automatically� is via the Hessian matrix of second derivatives evaluated
at the best��t solution �e�g�� Press et al� 	���� x	����� This local curvature infor�
mation is not particularly useful when dealing with a global optimization problem�
What we want is some information about the shape and extent in parameter space
of the region where solutions with �� � 	 are to be found� This is usually done by
Monte Carlo simulation� by perturbing the best �t solution and computing the ��

of these perturbed solutions �see� e�g�� Bevington � Robinson 	���� x		��� Press
et al� 	���� x	����� This is undoubtedly the most reliable way to get error estimates�
All it requires is the ability to compute a �� given a set of �perturbed� model pa�
rameters� if you have found your best��t solution using a genetic algorithm�based
optimizer such as PIKAIA� you already have available the required computational
machinery
 it is nothing else than your �tness function�

In relatively low�dimensionality parameter spaces such as for our orbital �tting
problem� it is often even simpler to just construct a hypercube centered about
the best��t solution and directly compute ���u� at some preset spatial resolution
across the cube� Figure 	� shows the result of such an exercise� in the context
of our orbital �tting problem� The Figure shows �� isocontours� with the best��t
solution of x����� indicated by a solid dot� A strong well�de�ned error correlation
between � and
 is seen on panel �D�� This �valley� in parameter space becomes
longer and �atter as orbital eccentricities approach zero� The gradual� parallel
increase in � and
 visible on Fig� 	��B� corresponds to the population slowly
�crawling� along the valley �oor� this process is greatly facilitated by the use of
creep mutation� Weaker error correlations are also apparent between e� V� and K�

The diamonds are a series of best��t solutions returned by a series of GA� runs
extending over ���� generations� Only the runs having returned a solution with
�� � 	�
	� are shown� The dashed lines are the means of the inferred parameter
values� Notice� on Panels �A� and �B�� the �pileup� of solutions at K � �������
and a similar such accumulation at � � ��� on panel �D�� These parameter values
map onto Hamming walls in the scaled �� 	! parameter range used internally by
PIKAIA� It just so happens that for these data and adopted parameter range�
two such walls lie close to the best��t solution� this does not prevent GA� from
converging� but it slows it down signi�cantly� in this case the solutions stuck at
walls still lie well within the ����" con�dence level� but GA� needs to be pushed
to a few thousands of generations to reliably locate the true �� minimum� Since

�	

Figure ��� �� isocontours in four hyperplanes of parameter space� Contour spac�
ing is $�� � ������� and the thicker contours corresponds to the ����" con�dence
interval for ��parameter joint probability distribution ��� � 	���	�� conceptually
similar to a one�� region� see Press et al� 	���� x	����� The solid dots mark the
best��t solution of x������ Note the clear error correlation between � and
 on
panel �D�� The diamonds are best��t solutions returned by a series of GA� runs�
The dashed lines indicate the corresponding mean parameter values�

most of the GA� solutions would be deemed acceptable on the basis of their ��

value� you might have missed this �I certainly did at �rst� unless you chose� as
you should� to heed the Dirty Harry Rule and err on the high side in setting the

��

generation count Ng� So here is a case where the use of creep mutation is de�nitely
advantageous�

The error�estimation procedure described above is straightforward though
�CPU� time�consuming� It certainly works if the computing costs associated with
evaluating one model are su�ciently low to allow the calculation of many addi�
tional solutions once the genetic algorithm has converged� If this is not the case
other strategies must be used� One possibility is to accumulate information about
�� isosurfaces in the course of a single evolutionary run� After all� while the pop�
ulation evolves through many hundreds �or thousands� of generations a signi�cant
�but non�homogeneous� sampling of parameter space is taking place� Through�
out the evolutionary run� one stores away all solutions that fall below whichever
�� value is deemed to indicate an adequate �t� This information is then used
a posteriori to construct ���isosurfaces� without having to carry out additional
model evaluations� Gibson � Charbonneau �	���� describe one such technique�
in the context of a coronal modeling problem� We actually had to take steps to
slow down the convergence of our genetic algorithm� in order to achieve a suitable
sampling of parameter space in the course of the evolutionary run �see the Gibson
� Charbonneau paper for more details��

One thing you should de�nitely not do is use your population of trial solu�
tions at the last generational iteration to establish error bounds� while the �nal

population will evidently be distributed about the best��t solution if the algorithm
has converged� the way population members are distributed in parameter space
is greatly in�uenced by features of the genetic algorithm� notably the value of
the mutation over the last few generations� Such extraneous factors are clearly
unrelated to the structure of parameter space in the vicinity of the best��t solution�

The least you should remember from Section ��

 Set upper and lower bounds on allowed parameter values that are as wide as
possible� while remaining physically meaningful�

 When using PIKAIA� always make your �tness a positive�de�nite quantity�
in your �tness function� always store your rescaled input parameters in local
variables� rather than back into the input parameter vector x�n	�

 Whenever in doubt as to the number of generations through which you should
let your solutions evolve� err on the high side�

 With global optimization� a posteriori Monte Carlo simulation is the safest
way to get reliable error estimates on the global solution�

��

Exercises for Section ��

�	� This Exercise lets you have a go at a real orbital �tting problem� Your target
is the star � CrB �meaning� the 	
th brightest star in the constellation Corona

Borealis�� one of the �rst stars around which a planet was detected �see Noyes
et al� 	��
�� You can obtain radial velocity data from the Tutorial Web
page under Data� These data were obtained using the Advanced Fiber Optic
Echelle �AFOE� spectrograph� Follow the procedure outlined in x��� to obtain
a set of best��t orbital elements�

��� Physically� what do you thing causes the
� �! degeneracy so obviously ap�
parent on Fig� 	��D��

��

��

�� FINAL THOUGHTS AND FURTHER READINGS

��� To cross over or not to cross over�

That is indeed the question at the center of what has been at times a heated
debate between proponents of two classes of evolution�inspired search techniques�
namely Genetic Algorithms and the so�called Evolution Strategies� The fact that
proponents of each class of techniques were also originally segregated geographi�
cally did not exactly facilitate the early phases of the debate� The initial study
and development of genetic algorithm is due to John Holland and collaborators
at the University of Michigan in the 	����s and early 	�
��s� Evolution Strate�
gies� on the other hand� were originally developed independently and more or less
simultaneously by a group of researchers at the Technical University of Berlin�

Both classes of techniques make use of the natural selection analogy� and
incorporate inheritance and variation in some form� They di�er primarily in
how they breed selected solutions� usually� classical evolution strategies use de�
terministic schemes for selection and population replacement� and make use of
perturbation and recombination operators that are functionally equivalent to mu�
tation and crossover� These operators are usually self�adapting� and are de�
signed to be signi�cantly �smarter� than the simple biologically inspired one�point
crossover�mutation described in x��� �see Michalewicz 	���� x������ and B#ack� x��	�
for some nice examples of such �smart� mutation operators�� Equally important�
these operators are applied directly on the �oating�point representation of the
parameters de�ning the model being optimized�

Classical genetic algorithms� on the other hand� have tended to stick to rel�
atively simple selection and population replacement techniques� and to simple
genetic operators that act on a string�encoded version of the model parameters�
Mutation is usually seen as a secondary operator� needed to continuously inject
variability in the population being acted upon by crossover and �tness�based se�
lection�

At any rate� the distinction between genetic algorithms and evolution strate�
gies is becoming increasingly blurred with time� as most current codes incorpo�
rate components from both� This is the case for PIKAIA� which carries through
breeding in a manner essentially in accord with classical Genetic Algorithms� but

��

uses a dynamically adjustable mutation rate in a manner reminiscent of Evolu�
tion Strategies� In evolutionary phases where the mutation rate is low� PIKAIA
operates pretty much like a classical genetic algorithm� when the mutation rate
is high� PIKAIA functions more like a stochastic hill�climber� This is a powerful
algorithmic combination indeed� As for the ultimate worth of classical crossover�
you are hereby encouraged to form your own opinion by doing Exercise ��	 below�

��� Hybrid methods

In the preceding pages we had a few occasions to refer to the characteristic
shape of convergence curves for genetic algorithm�based optimizer
 fast decrease of
the error in the early phase of the evolution� followed by long periods of more or less
constant error value punctuated by episodes of rapid error decrease� triggered by
the appearance and subsequent spread in the population of favorable mutations�
This is quite unlike classical local hill climbing schemes which �when they do
converge� exhibit a more or less steady decrease of the error� at a characteristic
rate for a given algorithm �see for example the two converged simplex runs on
Fig� ���

Local hill climbing is fast but local� genetic algorithms are slow but global�
This dichotomy is at the very core of the No Free Lunch Rule� but can actually
be made to work to one�s advantage by combining both techniques� This may
involve running PIKAIA until no improvement is made to the best individual in
the previous Ng�� generations �say�� and then using this individual to initialize the
simplex method �or any other local hill climbing method for that matter�� Such
a hybrid scheme combines the good exploratory capabilities of genetic algorithms
and the superior convergence behavior of other methods in the vicinity of an
extremum� This will often represent the optimally e�cient use of PIKAIA when
high accuracy �dubbed �absolute performance� in x	�	� is required on real�life
problems� Care must still be taken not to stop the genetic algorithm too soon in
the sake of economy in the number of function evaluations� otherwise Dirty Harry
will end up catching up up with you one of these days� I know you have now heard
it a few times already� but once again� there really is no such thing as a free lunch��

��� When should you use genetic algorithms

Because they rely only on a single scalar quantity� �tness� to carry out their
task� genetic algorithm�based optimizers are easy to use for very wide classes of
problems� You can use a genetic algorithm to solve anything that can be formulated
as a minimization�maximization task �and in principle anything described by an
equation can� This� of course� does not at all mean that you should� If you already

�

have something that works well enough for you� don�t mess with it� This is in fact
the First Rule of Scienti�c Computing� also known as

HAMMING�S FIRST RULE

�The purpose of computing is insight� not numbers�

When� then� should you consider using genetic algorithms on a real�life re�
search problem� There is no clear�cut answer to this questions� but based on my
own relatively limited experience I would o�er the following list

�	� Markedly multimodal optimization problems where it is di�cult to make a
reliable initial guess as to the approximate location of the global optimum�

��� Optimization problems for which derivatives with respect to de�ning parame�
ters are very hard or impossible to evaluate in closed form� If a reliable initial
guess is available� the simplex method is a strong contender� if not� genetic
algorithms become the method of choice�

��� Ill�conditioned data modeling problem� in particular those described by inte�
gral equations�

��� Problems subjected to positivity or monotonicity constraints than can be
hardwired in the genetic algorithm�s encoding scheme�

This is of course not meant to be exclusive of other classes of problems� One con�

straint to keep in mind is the fact that genetic algorithm�based optimization can be
CPU�time consuming� because of the large number of model evaluations typically

required in dealing with a hard problem� The relative ease with which genetic
algorithms can be parallelized can o�set in part this di�culty
 on a �real life�
problem most work goes into the �tness evaluation� which proceeds completely in�
dependently for each individual in the population �see Metcalfe and Charbonneau
���� for a speci�c example�� Never forget that your time is always more precious
than computer time�

In the introductory essay opening his book on genetic programming� Koza
�	���� lists seven basic features of �good� conventional optimization methods

correctness� consistency� justi�ability� certainty� orderliness� parsimony� and deci�
siveness� He then goes on to argue that genetic algorithms embody none of these
presumably sound principles� Is this ground to reject optimization methods based

��

on genetic algorithms� Koza does not think so� and neither do I� From a practi�
cal point of view the bottom line always is
 use whatever works� In fact� that is
precisely the message conveyed� loud and clear� by the biological world�

I would like to bring this tutorial to a close with a �nal� Third Rule of Global
Optimization� Unlike the �rst two� you probably would not �nd something equiv�
alent in optimization textbooks� In fact I did not come up with this rule� although
I took the liberty to rename it� It originates with Francis Crick� co�discoverer of
DNA and 	��� Nobel Prize winner� So here is the Fourth Rule of Global Opti�
mization� also known as��

THE NO�GHOST�IN�THE�MACHINE RULE

�Evolution is cleverer than you are�

��� Further reading

There are now quite a few textbooks or monographs available on evolution
strategies and genetic algorithms� The following three are my personal favorites

Goldberg� D�E� 	���� Genetic Algorithms in Search	 Optimization � Machine
Learning� Reading
 Addison�Wesley�

Davis� L� 	��	� Handbook of Genetic Algorithms� New York
 Van Nostrand
Reinhold�

B#ack� T� 	���� Evolutionary Algorithms in Theory and Practice� Oxford

Oxford University Press�

Goldberg�s book is a textbook� complete with exercises and examples worked out
in great detail� B#ack obviously enjoys abstruse mathematical notation far more
than I do� but his book is de�nitely recommended reading� Not the least of its
merits is its unifying presentation of genetic algorithms and evolution strategies as
di�erent incarnations of Evolutionary Algorithms� which helps a lot to appreciate
their similarities and di�erences� B#ack also has collected a set of really nasty test

�� For reasons best known to himself� Crick calls this �Orgel�s Second Rule�� If
any reader of this Tutorial happens to know what �Orgel�s First Rule� might be�
please let me know�

��

functions� I have retained a soft spot for Davis� book because this is the book I used
to teach myself genetic algorithms many years ago� It is far less comprehensive
in its coverage than Goldberg�s or B#ack�s books� but has an application�oriented�
no�nonsense �avor that I found and continue to �nd very refreshing� Two other
books well worth looking into are

Michalewicz� Z� 	���� Genetic Algorithms � Data Structures � Evolution
Programs� third ed�� New York
 Springer�

Mitchell� M� 	���� An Introduction to Genetic Algorithms� Cambridge
 MIT
Press�

Both of these put more emphasis on the type of non�numerical optimization prob�
lems that are closer to the hearts of most computer scientists� such as the Traveling
Salesman Problem� Mitchell�s book has a nice chapter describing applications of
genetic algorithms in modeling evolutionary processes in biology� Genetic algo�
rithms were originally developed in a much broader context� centering on the
phenomenon of adaptation in quite general terms� Anybody serious about using
genetic algorithms for complex optimization tasks should make it a point to work
through the early bible in the �eld

Holland� J�H� 	�
�� Adaptation in Natural and Arti�cial Systems� Ann Arbor

The University of Michigan Press �second ed� 	���� MIT Press��

If you want to know where the name Pikaia comes from� or if you think you just
might enjoy an excellent book on evolution� read

Gould� S�J� 	���� Wonderful Life� The Burgess Shale and the Nature of
History� New York
 W�W� Norton � Company�

Finally� here are some samples from the computing science literature that I found

useful and intellectually stimulating in pondering over some of the more �philo�
sophical� material contained in this tutorial

B#ack� T�� Hammel� U�� and Schwefel� H��P� 	��
� Evolutionary computation

comments on the history and current state� in IEEE Transactions

on Evolutionary Computation� �� ��	��

Culberson� J�C� 	���� On the futility of blind search
 an algorithmic view of
�No Free Lunch�� Evolutionary Computation� �� 	���	�
�

DeJong� K�A� 	���� Genetic algorithms are NOT function optimizers� in Foun�

dation of genetic algorithms 	� ed� L�D� Whitley �San Mateo
 Mor�
gan Kaufmann��

��

Hamming� R�W� 	���� Numerical Methods for Scientists and Engineers� New
York
 McGraw�Hill� chap� N � 	�

Holland� J�H� 	���� Hidden Order� How Adaptation builds Complexity �Read�
ing
 Addison�Wesley��

Koza� J�R� 	���� Genetic Programming� on the programming of computers
by means of natural selection �Cambridge
 MIT Press�� chap� 	�

Wolpert� D�H�� and Macready� W�G� 	��
� No Free Lunch theorems for op�
timization� in IEEE Transactions on Evolutionary Computation� ��
�
����

The least you should remember from Section ��

 If you need high accuracy in �tting parameters� use a hybrid scheme�

 If it works� don�t mess with it�

 Don�t be a purist� use whatever works best�

 Your time is more valuable than CPU time�

 The purpose of computing is insight� not numbers�

 Evolution is cleverer than you are�

Exercises for Section ��

�	� Write �tness functions for the P	� P� and P� test problems de�ned in x	���
Solve these problems using PIKAIA�s default settings� except for �	� setting

the number of generation �ctrl��	� to the values listed in Table �� and ���
turning o� crossover� This is most easily done by simply setting ctrl��	
��
Compare your global convergence results to those listed in Table � for GA��
Is crossover a good thing�

��� You should not try this exercise unless you have already done a few other
exercises where you had to use PIKAIA� The idea to explore is to let the
selection pressure parameter vary dynamically in the course of the run� in a
similar way as PIKAIA varies the mutation rate� The �rst thing you need to do
is to read carefully x��� of the PUG� to fully understand how PIKAIA relates
�tness�based rank to selection probability� and x��
 to fully understand how it
dynamically varies the mutation rate� Use the ideas developed in x��
�� of the
PUG to let the parameter fdif ��ctrl��	� vary in response to the spread

�	

of the population in parameter space� Run this modi�ed PIKAIA on the four
test problems of x	�� and compare the results to the GA� algorithm���

�� There is no answer to this exercise on the Tutorial Web Page� only a few hints�
but if you do get interesting results �namely� signi�cantly enhanced performance
that remains robust across problem domain�� I would very much like to hear about
it�

��

��

BIBLIOGRAPHY

B#ack� T� 	���� Evolutionary Algorithms in Theory and Practice� Oxford

Oxford University Press�

Bertiau� F�C� 	��
� Astrophys� J�� ���� ���

Bevington� P�R�� � Robinson� D�K� 	���� Data Reduction and Error Analysis
for the physical Sciences� second ed�� New York
 McGraw�Hill

Charbonneau� P� ����� Release Notes for PIKAIA ���� NCAR Technical
Note ��	�STR� Boulder
 National Center for Atmospheric Research
�PUG�

Charbonneau� P�� � Knapp� B� 	���� A User�s Guide to PIKAIA ���� NCAR
Technical Note �	��IA� Boulder
 National Center for Atmospheric
Research �PUG�

Charbonneau� P�� Tomczyk� S�� Schou� J�� � Thompson� M�J� 	���� Astro�
phys� J�� �
�� 	�	�

Darwin� C� 	���� On the Origin of Species by Means of Natural Selection	 or
the Preservation of favoured Races in the Struggle for Life� London

J� Murray

Dawkins� R� 	���� The Blind Watchmaker� New York
 W�W� Norton

Eigen� M� 	�
	� Die Naturwissenschaften� �	�	��� ���

Gibson� S�E�� � Charbonneau� P� 	���� J� Geophys� Res�� ����A
�� 	��		

Goldberg� D�E� 	���� Genetic Algorithms in Search	 Optimization � Machine
Learning� Reading
 Addison�Wesley

Hamming� R�W� 	���� Numerical Methods for Scientists and Engineers� New
York
 McGraw�Hill

Holland� J�H� 	�
�� Adaptation in Natural and Arti�cial Systems� Ann Arbor

The University of Michigan Press �second ed� 	���� MIT Press�

Jenkins� F�A�� � White� H�E� 	�
�� Fundamentals of Optics� fourth ed�� New
York
 McGraw�Hill

Koza� J�R� 	���� Genetic Programming� on the programming of computers
by means of natural selection� Cambridge
 MIT Press

��

Maynard Smith� J� 	���� Evolutionary Genetics� Oxford
 Oxford University
Press

McIntosh� S�W�� Diver� D�A�� Judge� P�G�� Charbonneau� P�� Ireland� J�� �
Brown� J�C� 	���� Astron� Ap� Suppl�� ���� 	��

Metcalfe� T�� � Charbonneau� P� ����� J� Comp� Phys�� submitted

Metropolis� N�� Rosenbluth� A�� Rosenbluth� M�� Teller� A�� � Teller� E� 	����
J� Chem� Phys�� ��� 	��

Michalewicz� Z� 	���� Genetic Algorithms � Data Structures � Evolution
Programs� third ed�� New York
 Springer

Nelder� J�A�� � Mead� R� 	���� Computer J�� �� ���

Noyes� R�W�� Jha� S�� Korzennik� S�G�� Krockenberger� M�� Ninenson� P��
Brown� T�M�� Kennelly� E�J�� � Horner� S�S� 	��
� Astrophys� J�

Lett�� �	�� L			

Petrie� R�M� 	���� in Astronomical Techniques� ed� W�A� Hiltner� vol� II of
Stars and Stellar Systems� eds� G�P� Kuiper � B�M� Middlehurst�
Chicago
 University of Chicago Press� chap� ��

Press� W�H�� Teukolsky� S�A�� Vetterling� W�T�� � Flannery� B�P� 	����
Numerical Recipes� Second Ed�� Cambridge
 Cambridge University
Press

Smart� W�M� 	�
	� Textbook on Spherical Astronomy� �fth ed�� Cambridge

Cambridge University Press

