10
i -di sional re-
where oscillations are chaotic. The authors do not use one-dimen

: i illations
n maps to characterize these osci , ' the
t:::lfluencepof stable periodic orbits in these systems can be described by fam

i i e way as in
ilies of one-dimensional return maps with cusp shape in the sam: y

our model.
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Adaptive Algorithms
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Abstract.

Potential interactions between connectionist learning systems and
algorithms modeled after evolutionary adaptation are becoming of in-
creasing interest. In a recent short and elegant paper Hinton and
Nowlan extend a version of Holland’s genetic algorithm (GA) to con-
sider ways in which the evolution of species and the learning of indi-
viduals might interact [17]. Their model is valuable both because it
provides insight into potential interactions between the natural pro-
cesses of evolution and learning and as a potential bridge between the
artificial questions of efficient and effective machine learning using
the GA and connectionist networks. This paper begins by describ-
ing the GA and Hinton and Nowlan’s simulation. We then analyze
their model, use this analysis to explain its nontrivial dynamical be-
haviors, and consider the sensitivity of the simulation to several key
parameters. :

Our next step is to interpose a third adaptive system — culture —
between the learning of individuals and the evolution of populations.
Culture accumulates the “wisdom” of individuals’ learning beyond the
lifetime of any one individual but adapts more responsively than the
pace of evolution allows. We describe a series of .experiments in which
the most minimal notion of culture has been added to the Hinton
and Nowlan model, and we use this experience to comment on the
functional value of culture, and similarities between and interactions
among these three classes of adaptive systems.

1. Introduction

It is interesting to note that two of the most promising approaches to the
design of algorithms for machine learning can trace their origin to the study of

*Computer address: rikes.ucsd.edu.

© 1990 Complex Systems Publications, Inc.
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a.nd the evolutlon used by populatlons. Prelllmn&ry experlments SUEEeSt the
3

3 dditic :f “: ]tlll‘il 3 t'f :tS” l; EhE ‘ : é tf ] 1 1] 1 '1 . f 1
.

evolut ‘ ver n n! ge;}g]@ﬁgg;l q;ld € ls Il g CCOIT : 1 e: I ?
b 10N (O a. S) th 2. ng acco Sh b! a.

individual (within a single lifet]
he rest of this report is divi i i i
I port is divided into six sections.! We begin by pre-

;{i:lt?iet,}:allna:;c features of tht? GA and Hinton and Nowlan’s model, then
i Secticr)xrlln;ents about lmporta.x.lt assumptions built into thes; pre- .
requisite (;uf o 1;px:esex.:tts our analysis of the model, and this provides the
basis for our ck a<t: e_nzatxon of 'the model’s behavior in section 4. Section 5
considers th intrx;s(; ivity of the s1mu1at§on to some of its key parameters. In
TR Itluif a very crude n.otlon of culture, as an additional “c};an-
nel” tirough » nowledgt-a acquired by one individual might be passed
mbers of the species. The paper concludes with a discussr,)iojlsif

some of the issues raised by th i
some of the issu y these experiments and potential directions for

naturally occuring' systems. Connectionist algorithms, since their cybernetic

beginnings, have often_had a real concern_with how. neurons in biological
to their envirnonment. Similarly,

nervous systems allow organisms to adapt
liy and the genetic algorithm ( GA)in

Tnodels of Smulated evolution genera

partlcuiar re attempts to mimic the way species become adapted to their
respective environmental niches. Toth classes of algorithms have since been
Jeveloped so that their correspondence to the original natural phenomena is
often only metaphoric, but as we attempt to compare and possibly combine
these techniques it makes sense to start with a basic understanding of the
interaction between the natural processes of evolution and learning.

In order to adopt a perspective that allows one to capture the GA and
connectionism within a single view it is necessary to back up, far off-stage,
and each of the characters consequently becomes quite small. That is, in an
attempt to capture interactions among enormously complicated phenomena
__ evolution, learning — the models of each of these constituents must neces-

sarily become extremely simplified. There are certainly other comprehensive

mode ing in cognitive systems than the connectionist account (e.g.,

&M Even within connectionist models of learning there is great di-
tionist systems. are extremely complicated in their

Versity, and most connec

own right. The same is true of various models of evolution, and the com-

plexity of various versions of the GA. But our concerni here is not with the
jonism as a model of learning or the GA as a mode

e of this work is that connectionism _and t

the validity of connect
of evolution. A central premis
GA represent. two very ace wate models for Jearmng and cvO ution, respec
tively. We propose to take these two models as canonical in_order that s 9.1 The genetic algorithr
we might begin to explore Thieractions between these two forms of adanfive; The GA hg etic algorithm
e . .
Sl ::v el:;:en mvestlgated.by Jobn Holland [18] and students of hi
y years now, with a marked increase in interest within t}::

ast few years [14,15 26]. The i V. n a m

: . 5,26}, e interested reader is advised to begi

thorough introduction to these algorithms with the e)f:ellex(])t neeg\lv taext ol:e
y

2. Preliminaries

This res i '

ot r(:laz'cGhAl))u;k;s }a;gua,rely on two previous bodies of work, the genetic

e x: 1 inton and Nowlan’s model. This section ;avill begin b

presct ani the (;f: ra fealtures of t.he QA, then present Hinton and No%vlan’);

podel and sic results of their simulations. Our preliminaries will
several comments about important features of this modell o

search.
M

Merging these models, and especially makingvsense of the hybrid’s b

«.hav;' or, is difficult. In a very short and elegant paper in_these.pages, Hintonih
and Nowlan ] uiation suggestin “how learning can guide evolu-18 .
Boldberg [12].

fiop” (17). In order to achieve this goal, their j rates an im ov-d

erished -not'{on of. le@rning into t}.le GA. The result of this .s,in?gpﬁcation is it Attempts .t° simulate evolutionary search date back as f

T-ulation in which the m_tgract;gmm GA and individuals’ learns empts to simulate neural networks [11]. The basic construcéﬁoisisﬂ;e frst
- o con-

ing ar ly accentuated. The work reported bere builds squarel

on this beginning.

The questi “how learning can uide evolution” is criticall
tant because ned with how the results of one ada tive sear

(individuals’ Jearning) can be ca “taliced on by apother (the evolution of
1 n 1 correlates of these adaptiv

xperrog,ié);pué‘aglon .(;ftx}rlldxvnldua.ls that each represent a potential solution t
2 . Then, if the relative success of each indivi .
_ n, if the _ ividual i
:1 :;ngid.er;fi .tc{ns individual’s fitness, this number can bltle usoerji i}:s ;imb]em
b'enera,ti::l l\l'alyu;:ls t:'). priclllt}ce similar but not identical offspring fo:il‘::tn:lc:
: . rating this process, the population effici
. . . . CIe t
p;;z ;-;i ;;oter}};ilallindlwduah and eventually converges on trlllgb;nsirguf)iltes the
pecifically, consider a populati f N indivi .
e 1 on of N individuals z; ' -
nstmc:'eg. ctlrom:l)sonal string of L allele values. An initial ;)’o(:fl};tl:epr?
sbruc a;biz:r random; call this generation go. Each individual is evalixoai 1;
som individs‘z ienvn'o;i:lnent: i;unction that returns the fitnesses u(z;) Ee§R
; divid n go. The evolutionary algorithm then ¢
gns. First, its selection algorithm uses the NV fitness me:;?;::: ?:;;ZI:EFI‘
ine

" When one considers the natural
it is not at all clear what the medium for this exchange of in

algbrithms,
formation might be; the time scales of individual learning and a species
evolution is wildly different. Yet, at least in the case of the human species,

learning accomplished over a lifetime has become coupld

does seem as if the
with the process of evolution. Whether this perce tion is accurate or not, W

] will argue that it is appropriate to (;onSider culture as 2 third, intermedial
; 3 adaptive system used éy societies, between the learning used by ind.ividua,‘

ortions of this report appeared in an early report [3)].



MX»&“HQ D"‘q mutation: some number of alleles

‘- LMML;{“K ‘Every higwwhsd%ggl biology student know:
{Thasn )

BJJVJ!‘V\ t\

v 4 hy

Richard K. Belew Evolution, Learning, and Culture -
o 15

14

member of g contributes to g;. Second, some set of
genetic operators are applied to these offspring to make them different from
their parents. The resulting population is now g1, these individuals are again
evaluated, and the cycle repeats itself. The iteration is terminated by some

how many offspring each

/7

measure suggesting that the population has converged.
A critical distinction.among gimulated evolutionary algorithms is with, Behavior
respect to their genetic operators. Often the only genetic o erator .used is
in the parent are arbitrarily changed.] :
1 the most successful in-
LEARNING

the child. This amounts to a Tandom search aroun
dviduals of the previous generation, and is therefore not very powerful. The
central feature of Holland’s GA is its use of an additional crossover operator
modeled on the biologically veracatious operation of genetic recombination:
during sexual reproduction segments from each of the parents’ chromosomes

are combined to form the offspring’s. The GA’s crossover operation picks

< L at random and builds the offspring’s bit string by
ing bits from

EVOLUTION
\/

two points 1 £m, n
taking all bits between m and n from one parent. and the remain

the other parent. For example, if L =10, m= 2, n=6:
Figure 1: “Baldwin’s arm.”

Parent(1): 1111111111 offspring(1): 1100001111

Parent(2): 0000000000 pffspring(2): 0011110000 have on_its ies’ i
? g(2): species’ genetic search. John Maynard Smith summarizes the

hypothesis:

The appeal of the GA is due both to empirical studies that show the crossover ;

operator ‘works extremely ol on real, hard problems, and_also to the “sche- 1
mata’_analysis Holland has provided to show why this is the case-

One key Mﬁfi’iﬁf the GA is that it, works on}gpopula,,\t_j_gn,of (binary).bit

strings with absolutely no knowledge of the semantics associated with these

bits. Its only contact with the enviro \ %s the global filness measure
associated with the entire string. This _is considered. an advantage of the

algorithm because it _ensures, that the GA’s success is not related to the 1
o say that the GA works ]

cemantics of any particular - problem. - This is not
that these éiﬁiﬁen&?i can be attribut ed

Lo
€. (=111}

fomﬁl‘:;r; nlf1 ;v:haec;:f:z] [tltlat i:};ilividu.a‘.lj’ i‘eaming cannot alter in-
facilitate evolution. If’indlisv?dluall)soisalr' y :nreicrili:.VId}lal le?}miﬂg -
ity to lea,rn., or to adapt developmen{a.glly, therili,l:gszhrerg;az;;-
to. 1ii.(?.a.pt will .leave most descendants, and the genés responsiblz
:;'ll. _increase in ﬁtn_ess. In a fixed environment, when the best
ing to }ea.rn remains constant, this can lead to the genetic d
termination of a character that, in earlier generations, had ltco be;,

acquired afresh each generation [28].

on all problems equally well, only

phwnc i

fo the underlying search. spaces X rather than the sero
domain, [4].

1utif)):: at;siful way to graphically portray the effect is shown in figure 1. Evo-

e e viewed as a pro«;gss for moving a “phenotype limb” (co rres.pon d

species or gene pool) in order to better adapt i i ]

ot e et ot ter a apt it to an environment.
capable of generating a range of b i

. eh
zlfleizz ::ix; :e i{xe“{ed al.:sfa. second, “behavior limb” being ngloved by &:Keof‘;)ia;lng
' . To simplify, imagine that being fit means bei

point in space. The simple but i Baldw A

oint in. ut profound idea of the Baldwin effect i

. . . t

since it is sufficient for the two-limbed, coupled arm of phenotype(ii-llesa:r}ll:g

- 3 hehavior to be able to reach i i
‘ of 2 ""mmﬁgﬁ&“&ca“ become directly ch that point, an improved capacity for learning

fcations of the phenotype over the course : creases genetic fitness.

incorporated into the genolype = depends impossibly on mechanisms oIy Hinton and Nowlan hav :
verse iption” for which there is almost no evidence. Less well known.is i strates the magnitude” of i}‘}:”;‘;’l‘;iﬁ: :?frergtm[tléit]mf:l Tonsectionists they
. As connectionists they

a hypothesis rst attributed to Baldwin (2}, but later exlpressed by others [30], sume a neura) network as the basis for learning and |
' 3 indi t 1 f tory organism cam F e N use evolution t
Fogarding an indirect effect the PEEEH o exploraory orgeniom cua fr neural wiring that allows an individual to learn effectively o search

2.2 The Hinton and Nowlan model

Attempts to integrate the learned behaviors of individuals into their genetic
consequence on a species have dogged the theory of evolution since Darwin. |
8 that.Lamarwg},(;g theory — L&

.

R
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potential connections. An i

Richard K. Belew Evolution, Learning, and Culture
v 17

they imagine trying to construct a neural network of L
ndividual is considered successful if and only if
they have all of these connections correctly specified. Thus there is exactly
one right answer out of the 2L possible combinations. By convention we
will imagine that this right answer is the string 111...1. It is important to ;
recognize what a difficult “environment” this problem poses; it is sometimes !
called a “needle-in-a-haystack” or “impulse function” problem. Not only is
there only one correct answer out of a huge space of possible solutions, but
there is also no information available from any of the other solutions about

where the correct answer might be. In such problems there exists no better]
an by exhaustive inr the entire space. In particular

More specifically,

Fitness

"Shoulders"
created by learning

way to
the GA would fare no better.

Tndividuals are represented by a ternary string z; €
fies that a connection is present, a 0 that it is absent, an
n: one that can be set either open or closed during the “lifetime

(0 1 7). A 1 spedi-
d a? a “learnable”

? of
"Needle"

connectio
. the individual. An individual’s life experience amounts to repeated attempts
1to set these learnable connections correctly. In the interest of parsimony.
. Eag al is given a fixed }
Solutions

{ their mod earning is extre _
number G of completely random guesses ettings of their ? values

#They are. also given | the ability to recognize the fact that they have found t

correct setting.

Figure 2: Creating an adaptive basin,

Hinton and Nowlan use a fairly standard version of th

For evolution, 95% 0s and ;
s a function of th ® 0s and 1s, and gave each individual G = 1000 guesses. They also used a

GA. The fitness p associated with each individual z; i -population of indivi
P po ation of 1000 individuals, a crossover rate of 1.6,? and no mutation {24]
e . . ’
ne property the connectionist systems is the notion

r of guesses g that individual made before finding the correct settings
— —q) 2] * ¢ [ rpews -
(L-1)(G—-9) it Lum Wutl\on of oy 2.1 distributed representation.” That js, just as “concepts” i O
G works are represented diffusely by a pattern of o 1n_connectionist
. 50 00 AT6 50T U ions Fo e T el mnibeotete QLACLVILY across many n
that allows the GA to work. Hinto Solutions found by the GA represented across individuals of a EP'

numbe;

pzi(9)) =1+

This function provides the key advantage

g

" that have been added tog lation. Thus, the simulation variables to be monitored are pomalnt; id
. ion-wide

and Nowlan describe it in terms of the “shoulders teristi
the impulse fitness function of figure 1: Suaractenstics rather than feal individ .-—-m-ul_m. o
: . 4, vidual. The major d
iables considered by Hinton and Nowlan are the pépulation-wigeegi(si:rrit
LTI e ;,

- utl(;)gi of correct, incorrect, and undefined alleles.
Iesultl;r (a);m:hvgork Pegﬁan withsa simple replication of the Hinton and Nowlan
o :)f . ﬁwndm gure 3. 'Here their three major variables (the allele
ehined, correct and incorrect alleles) are plotted as a function of

ration. These basic results will b i
e analyzed il1i i
4 and then extended in sections 5 and gz e in some detail in sections 3

With learning, there is a zone of increased fitness around
the spike -- .[corresponding] to genotypes which allow the cor-

rect combination of potential co learned.

There is still only one correct answer, but now there is also a basin of attra
tion around this needle that the GA can use to moves its search toward th
needle. Another way to say the same thing is that for realistically large
the chance of finding the needle, 2-F, is vanishingly small; without learnin|
{ this is what an evolutionary search must do. But with learning, evolution:

required only to find a solution that is within the basin of attraction of ¢

needle, and this is much more likely.

For their simulations, Hinton and Nowlan picked the parameters carefu
With L = 20, if (on average) half of the alleles are learnable 7s, there ax
910 — 1024 combinations to try and an individual given 1000 guesses stan
a very good chance of finding the correct one. It is no coincidence, the;
that Hinton and Nowlan began with a population consisting of 50% 7s,

2.3 Discussion of the Hinton and Nowlan model

Phe Hinton and N i i
e owll)an model. is a very fertile platform from which to in-
ns about the interaction between evolutionary and learn-

.
A crossover rate of 1.0 means that, on average, each md1v1dua.l will partlapa.te in 1.0
IGﬂEDStedt has developed a useful slmula.tlon fﬂ.Clllty for G mvestlgatlon called
3 . . . . .
A
esis |13 s and it was used as a basxs fOX tlle slmula.l;lons to be pl'eSEDted here
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It may seem susgecf to assume that an individual is capable of recognizing
when they have found the correct solution (

needle). Hinton and Nowlan
provide the following rationale:

18

Base - Aliele rations ‘

This recognition ability ... is required to make learning effective. - . .
Thus it is possible that some properties of an.organism.which are
currently genetically specified were once.hehavioral goal
organism’s ancestors.

e ; This argument sounds almost Lamarckian and pe . :
- — the context of an individual knowing when . wiring is correct.
woma | “fovever, simply giving s individual the abiity fo recosnize hes |
- Incorect 8 ‘found a good thing is not so far-fetched. :
] A _more unrealistic assumption (acknowledged by Hinton and Nowlan) is >
that the correspondence between phenotypic feature (i.e., neural connection)
and genetic ope. This is a great simplification. In actual-
ity, there are immensely complicated developmental processes that mediate
between genotypic_ description and phenotypic expression; a better under-
standing of this relationship is a critical issue for further work in this area.
Another troubling aspect of the sim wlation is. that il.ignores. the real

semantics of neural networks: there is an obvious asymmetry between genet-
- 1 Nowlan results ically specified and learned connections. Virtually all connectionist learning
Figure 3: Hinton an :

algorithms allow connections to come to have zero weight, making them act
as if the connection was not there. Thus an existing connection (1) can learn
- to have zero weight; an absent connection (0) cannot ever become nonzero.
We should expect this bias to be exploited by any hybrid adaptive system
that combines evolutionary and (connectionist) learning subsystems.
Hinton and Nowlan make another strong and important claim:

o~ =>

when it has

0.1 4+

P

°......----

. .
ing adaptive mechanisms. 1t does incorporate some important assumptions,
however, and it is worth making ﬁhese explicit. ‘ o
First, a great deal of the simulation’s behavior depends critically
b A .
fitness function of equation 2.1:

P Fehu o o e 08 4
ra

.. .each learning trial can be almost as helpful to the learning

e T —— L Pt 08 Aol vy duy search as the production and evaluation of a whole new organism.
{’:f~ u(zi(g)) = 1+ Q_';llC(TG;Q) v vds Futamos wian Thus they view each learning trial as a “cheap” version of actually producing
: i
N .

N&f‘j Q'?.“'( P57 Py %“uclﬁ? V\b;\h\.\k
S 2L NS AT wi SN TR ) e

T] . oL « . f . ,
€ Cellt'ra/l feartule 18 tllat lt 1S & monotonlcall decreasln' oCth 0 0
num Of uess: nd the nee. dl . Hlnton a:nd Nowla.n alSO Chos_

to scale this quantity by the ratio of chromosome letngzh to the tf)tza.l numl
. . o

of guesses allowed. This s le als

simulation’s behavior.

Eguating learning witl} a series qf st

- an individual. Our conception of the relation between these two adaptive
. subsystems is considerably more complex, as we will discuss in section 6.

3. Analysis of the Hinton and Nowlan model
3.1 Definitions

We begin by defining some of the major variables of the simulation. Let:
Length of individual

Maximum number of guesses allowed each individual
Population size .

Fraction of population’s alleles that are 1

Fraction of population’s alleles that are ?

= Fraction of population’s alleles that are 0

atistically independent guesses vis ob

e pegomarres e s iir g ;
viously quite inadequate. '."I'n fact, bf?‘[earmqg” we typxcallydm(;agnahrixsoo
exactl that subsequent behaviors of an individual are dependent on his 0

previous experiences. Thus Hinton and Nowlan’s guessing model is prop

er previol iz » g}mlzticallx tractable Jower bound on the pfrfgm .

g Cg e ;gl%eérgi of a realistic (e.g., rennectionist) learming algonithm. In -&

iﬁx:r\gs “Thus using'a. more gophisticated learning procedure only strengtl
) ?

: »
ens the argument for the importance of the Baldwin effect.’

Il

i

Saw 2Q -~
1
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Note that p, g, and r.are defined in terms of the total population’s genetic 3.2 Expected fitness
distribution. In many cases, however, this is also a good estimate of individ-

hat an individual allele

uals’ allele distributions, for example the probability t It is important to know the expected fitness of an individua] d
ual under Hinton

and Nowlan’s « i
vlan’s random guessing” fitness function:

is 1 is also p. Also, we will.on occasion use a subscript to indicate generation;
for example, po is the fraction of 1s in the initial population. ¢
Unless noted otherwise, these parameters are set as in the Hinton and : (L . Ly
Nowlan simulations: : wg) = 14 M | 3
G = 1000 . o (33) o
N = 1000 - We begin by finding the expected numb
= 1 the learnable (?) alleles for an indivi (Iimm er of uesses g required to pick AN
po = 025 1 {  different ways. ?( : .2....& SIG xvia_ugl, and this can be derived in two ,.,}
! e . b 3 ; R AT LR 4
w© = 050 -Jf;ﬁ,jft-‘?ﬁt Aol First, we can begia with the(s?r)a{gli(tf?ﬂ)f TR WO Cale ins ghea
. ) i B . “81n v rwar D . .
ro = 025 Ao N:M.(‘M %\ | ;::}I: % <.>V1e.r the possibilities that the first correct gs;;‘s’a'zlon of E(g) by sum-
Bonwmovtit - -V rial is b ao bl de Sk o :>mes on exactly the
r’. . N L R T P

Also, recall that Hinton and Nowlan use a “needle-in-a-haystack,” im-

pulse funckion environment; Le., theres exactly one value in the domain
f

ithout lo

b (nabae o A Fecbt o o Gufed, b

1 . . » .
However beCauSe our 1‘lnct10n S“)ps gHeSSlllg a“el' (; at e]n])fs 1[[]5 series \/

0o N A, y}/ S WL I , .
E(g) — § )@)k- > . AR Y TN

=1V 2 Bl = 2(1)1: !

k=1 ) Coop. g o t(‘é.} o {4,%

with a nonzero fitness associated with it. By conventio
generality, we will assume this value to be the string 1111...1.

#"We will call an individual without any 0Os a Potential Winner, since only must be truncated;
such individuals are capable of using some combination of 1s and ?s to find Vidowt wetlder
the needle. A Winner is defined to be a Potential Winner that actually E(g) = (i k(1 ke dr o
guesses the correct setting of its learnable alleles; a Loser contains at least & (1-¢ c) +G(1-¢)% . 3 R ? :4
(3.4) Ak £,
v n et fm

one 0. We will refer to the set of all Winners in the population as the Nobility
and the rest of the population as Commoners.?

Equat]on 3.4 1s a geOInetrlc S€ries. Be INNINg w th the St y
g g 1 andard ldentlt . K Mh& Vi

We begin with the simple observation that if an individua] has @ learnable n
(7) _alleles, the probability of guessing their correct values is 2-%. Let us Y= 1 — g
= = l-=z

differentiation then gives:

n

S g1 = 1H 8™ — (n 4 1)on
i=0 (1- z)?

Then substitutin
o ing z = (1~c) and n = G int cr e
series 1n equation 3.4 with this ekpressionlzisezl.le identity and replacing the

o=@

c=

To be a Winner, an individual must first be a Potential Winner and second |
guess the learnable (?) alleles correctly:

Pr(Winner) = Pr(no 0s)Pr(guessed correctly)

= (1=-r)f1-0- ¢)°] 32 o o )
E(g) - 1+G(1—-C)G+l "(G+1)(1 -—c)G %
Using the parameter values given above, Pr(Winner) = 0.00198, and ‘we c +G(1-¢)f |
should therefore expect to find about 2 Winners in an average population of | : 1—(1=¢) 15} 400D _
1000. Our simulations agree with this estimate (see section 5). = _\c) = A- (1-2 ) _ (325 GL:::: "
i ¢ rrmm (3.5)

We can arrive at equva.tlon 3.4 I a more elegallt fashlon by uslng Vba,ld S
Lemma 5 . Ih]s leﬂ]n]a. Ielates the expected pa. Oﬁ E(SN) Of a.run t d -
y Ol 1nqe.

nd perhaps even offensive, but as you trudge'é
]

4This terminology is admittedly colorful a
it helps to breath some life into it all.

through the symbology and simulation data,
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pendent, identically distributed trials, each with expected payoff p, using an

arbitrary stopping criterion N with expected value E (N): :
E(Sn) = pE(N)

In our situation, “success” simply means guessing the @ learnable values |
correctly and so p = ¢. Our strategy N stops either when we have guessed
correctly or guessed G times without success. Our payoff will therefore be
one unless we were unable to guess the correct combination in G trials, hence: }

E(Sy)=1-(1-2¢°

Solving for E(N), which is exactly the same as the E(g) we desire, we again |
get equation 3.4. . 5

Note that if we are allowed many guesses, E(g) >-c and we are almost.-
certain to succeed; conversely, if there are many 7s, E(g) < c and we will
almost certainly fail. Thus we are most interested in the case when E (g9) ~ G. j
Alternatively, if we define: ‘

we are interested in_the case A ~ 1. In this case, we can a.pproxima,te"

vy v e PRI NSRS —
T=¢= e ¢ and equation 3.4 becomes
e et

G for A~ 0
E(g) ~ }:_f\:iG for A~ 1 (3.6)
1/c for large A '

Differential fitness
Mu(q) - Mu(g-1) '“'

W) - pet) 2 ¢

o
<

+—t e p—t——t
€ 7 8 9 10 t1 12 13 14 15 16 17
Learnable alieles (q)

T 4t

18 19 20

Figure 4: Differential E(p).

next generation, thereby increasing the population’s ratio of 1s, since thisAis

just the process of gradual .
bebavion gradual replacement underlying the system’s asymptotic

We are now able to substitute E(g) into equation 3 to obtain the e'xpected:

Recall i o,
fitness of an individual: (equation 3.6) that when X is large, we can approximate

E(g) = 1/c. Some algebra then gives us the difference:

L-1 : " .
E(w) = L-—— (1-(1-9°) 3. E(g") - E(g) =29(2™" - 1)
L-1 .
~ [-2——(1-¢? ituti : )
5 ( e ) Substituting these values into equation 3.2, a bit more algebra gives us

the fitness advantage the lo * eni
Figure 4 approximates the derivative of this function with respect to ¢ will define this diffgrence as Zr. @" enjoys over the rest of the population. We
using differences. This eraph makes two important boints that will be echoed )

ater, First, it shows how little selective pressure there is to replace 7s
see section 5.2). Second, it shows how 1i

15 in a string of almost all ?s (

Siective advantage there is to replacing the last few 7s (see section 4). a = p-j
selective aCVANIARS AaRS : 4 I o3 PP : (3.8)
3.3 Asymptotic behavior A ) - (3.9)

Consider the situation late in the simulation, when the entire population i
composed of only 1s and 7s. Let us assume that all but one member of th
population has exactly @ 7s, and that this one individual z* is a bit mor
fit, with exactly n less, Q*=Q —n. We will ask just how likely it is tha
this more fit individual will get to make more than one copy of itself in thi

In order to relate the individuals’
. r uals’ fitness p to the number of copi
. 3 . co
;:z};)i cl)x;f,h;lr(::a.{i v, w%‘ nlllust consider the details of the genetic ag::i‘:}?;?’z
; edure. Following Baker [1], we can imagi indivi
ing allocated a slice of a wheel ion i e o Indiiee!
: proportional to its relative fit
iiformly selecting from this wheel N times to pick our ne;ezigzﬁa:i};;n
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Thus:

E@*) = £ (3.10)
F Base - Allele rations
- (3.11) '
— . . .r
Nk 00 THASED PHASE | | PHASE 2 PHASE 3
Fithess«16.087

where [i is the average fitness of the population. In the case we are considering

A
Av
| e
(with exactly one more fit individual), this is particularly easy to.compute: v §
t g o8 A%
* '. 0.8
B+ a 4 ' ]
E(v") = TI777 (3.12) NS
'N'(N”"" a) In 0ad
1+% " 0.2 4 'J
= i (3.13) | . TN
1+ N : 01 4
04—l

=t + ¥
1.2 3 4 5 8 7
. 8 © 10 1112 13 14 15 18 17 18 10 20 21 22 23 24 26

Consider the quantity a/fi, the ratio of the unique individual’s fitness !
Generations

advantage to the fitness of the rest of the population. This ratio will always
be small and since o/ Nji is even smaller, we can legitimately approximate
this using the first two terms of the Taylor series expansion:

O av. -—
L vp. ftness Undefinded  *® Correct _"©* Incorrect ]

Figure 5: Four phases.

“of 50% ?s and 25% 0s and
1s, th i i
ot four P , the population can be viewed as passing .
For a surprisingl i i
gly long time, which we will call Ph
; : e, ase 0 i

}fﬁ tsh: poapula:tlon .r'_sm‘:uned' almost unchanged. One possei:bl,e teilci)f;;ei:' l'at;OS
%olutif,f ;;Illt telgm!lbrmm is that no individual has yet guessed the éz?r 0:

\;,ammet.ers usedlsw:: :;;t tllée case. The previous section shows that with :}fe

ould expect approximately t i :
o _ y two Winners -
e 1; _and figure 6a shows this to be the case; the important first renoeation
is curve have been expanded in figure 6b Benerations

A small i i
s A mininal;\:frflbir of Winners a,re.belng produced each generation, but the
e mininal ec on.the.popula.tlon. The problem is that beca.us:e th G/-}\l
od enetga recox_nbma,txon, offspring of the Winner will’ also have : if
“,be % el r]: tI}I:aten?l from some Commoner and hence are almost celgtm' .
s theer;x:; 1:/;1.. Hov»fzver, these Winners do have the subtle erff:gt:
: ition-wide ratios of 1s and ?s slightl i
vefalget];fﬁi V}Zmners, c;mposed entirely of 1s and ?s, arg mtﬁhfr}::r:?tszﬁ "
! ence make more copies of themselve i it
! s. This i
,alll), em'lchr.nent of 1s and ?s provided by Winners uar(a:.ortmtant, b
umber of Winners steadily increases. ¥ niees that the
John Maynard Smith ha \ si
s made a similar ob i
o . : servation about the Hi
inowizn il.lll}:lat.lon [28] He notes that in a population wit}foxll{tmton
g capability (i.e., with only 1s and 0s), asexual reproduction canall;y
e

E(V') ~ (1 + 'ﬁ)(l - m;)

a 1,a o
= 1+--5lz+33
7 N(# #2\)

Thus the number of copies Wwe.can X expect to make of » slightly more it
indivividual when the entire po pulation is guite £t 1s onl greater than;
one. For example, if we use the parameters of equation 2.1 and consider
T case when @ = 6 (see figure 4) and the more fit i
less 7 (n = 1), we find that o/t = 0.0324; the more fit individual has onl

slightly better than a 3% chance of making any more copies of himself in the

next generation than anyone else. Even if a very lucky individual happens
to get two less 7 (n = 2), his or her chances improve only to about 4.8%,
Further, selection in the GA is discrete; even this slight advantage is only in!

the expected value of E(v").

4. Explaining the model’s behavior

Armed with the analytic tools of the previous section, we are in a position
to explain the simulation results presented in figure 5. This figure shows the

same three allele ratio curves of figure 3, but has been overlayed with thes
average fitness of the population and delimited into what we will argue an
four significantly different phases. Beginning with the population compose
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Figure 7: Long run.
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?s remains almost unchanged. Notice also that the average fitness of the
population changes little during Phase 1.

Phase 2 continues this same basic trend, but begins to also apply pressure
wainst guessed alleles (?) in favor of genetically specified correct ones (1).
fin terms of the fitness function (see equation 3.2) an individual is always
better off not having to guess, and so there is a constant selective pressue
against 7s. In other words, as the 0s of Losers are replaced to create Potential
Winners, the 7s in these Potential Winners are almost immediately replaced
make them more likely to be actual Winners. Thus it is during Phase 2
at the average fitness of the population increases most markedly.

. However, as Hinton and Nowlan correctly observe, this advantage dimin-
jshes as the number of ?s in a Potential Winner becomes small. The analysis
wection 3 shows how fitness depends on the number of ?s, and in particu-
» how little adaptive advantage there is to replace the last few ?s with 1s.
mately, in Phase 3 this effect results in an almost steady-state popula-
sn composed of approximately 30% ?s and 70% 1s. While these two curves
in fact asymptotically approaching 1.0 and 0.0, respectively, progress is
emely slow. In fact, figure 7 shows that these levels remain virtually
stant out to 500 generations.

w~9833"%

Generstions

‘- pot. winners @ Winners l

Figure 6: Winners.

. . d
i i han with sexual reproduction an
expected to find the solution more quickly than e e meedle

i long tim

ver. It will take both methods a very ' : . ‘

(1:)!;(1)': sc:)nfe found asexual reproduction will reproduce this solution with more

delity than sexual reproduction. g ‘ - '

! eDtsllring Phase 0, it is extremely unlikely that two Wmn«;.lrs V:';ln \f;&l‘i ;); :

another” and produce winning oﬁspri}rllg. Pha:; 1 belg‘t:: ;))vc)teerll1 A i\:10 e

i ing that are themse

find one another, forming oﬁspnr.lg clves Potont i a stron
i Winners begin to beget Potent inn

e bk <3 leli‘s entered in which Losers are steadily replaced wit

Dt e cycNot‘.e that the only difference between a Loser and

Potential Winners. by a is. -Hence, durin The reasons the asymptotic convergence of the population has been ef-
D e et 0 e o down, }?eentirng?clzd@};s up and the,ratio o ively stalled can be found in the analysis of the last section. As shown
Phase 1 the rtio of & £ dovm, e B “ifgure 4, there is very little selective advantage to replacing the last few
i the size of the population is N, it will More concretely, the asymptotic analysis of section 3.3 showed that, late

80 1

S There are 2 combinations to guess,
9L /N generations.

dhase 3, a single more fit individual has only a slightly higher probability
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of producing even one additional offspring. In short, the additional fitness ;
achieved by replacing a 1 with a ? in Phase 3 is so small that the proba- !

Generation

bility of producing more than an average number of offspring and thereby ;
increasing the ratio of 1s is infinitesimal. ' e
The picture we have, then, is of a dynamical process with first a slight f ol A
_but constant movement ‘toward a critical point (during Phase 0), an almost ¥
instantaneous “ignition” (when Nobilepersons first find one another) that HA
within a few generations changes the composition of the entire population : 27
; first by replacing incorrect alleles with correct ones (Phase 1) and then by re- v 107
’ placing learnable alleles with correct ones as well (Phase 2) at an increasingly : '
; slow rate (Phase 3). t ey
: o
k v
5. Parameter sensitivity T
: [y S, 1 OV S P
‘f One elegant_aspect of Hinton "a‘,,nﬂd N9W1a,n’$ Slm}}ﬁ,ﬁ;gww&h&&%v%wm 2000 123 4 6 €7 8 9 10111215 14161817 18 19 20 21 22 zsl:;:
g their parameters are delicately balanced against.one another. For example G -7
the number of guesses allotted — was chosen with regard to the averag T
number of 7s in an individual (see section 3). A second phase of our own i 16007
research perturbed some of the major variables of the simulation and found 8 14.00 +
it to be surprisingly robust. Section 5.1 considers stochastic variability and [ 12004
question we believed 16 be related, the size of the population. These experi a 10,004
ments also substantiate the predictions of section 3.3 concerning asymptoti ¥ eood
behavior of the model. The sensitivity to allele ratios in the initial populatio ' ecot
is considered in the next section. Finally, we investigate the effect of mu vl
tation on the model. Hinton and Nowlan did not include mutation in thei ’
experiments, and so it is something of a misnomer to investigate it unde w0t
the rubric of “parameter sensitivity.” However, mutation is a very standar e e T
€ 7 6 0 10111213 14 16 16 17 18 19 20 21 222’2‘:&

part of most GA implementations and easily incorporated into the model

Section 5.3 shows it to have nontrivial effects.
Figure 8: Stochastic variation.

5.1 Stochastic variation and population size

\iQ;\}lj )\Hl"ﬁ The GA, let alone the individuals’ suess%n_g‘p_rgg_edge, depends heav'ilx 0

< stochastic procedures so we m . For this rea

dations were run varying this parameter. In fact, stochastic variation did not

sappear to vary with changi i : .

opulation size was that smaller po

the Law of Large Numbers, decrease this variability, and a number of sim

e

/‘\M?"W’“’

,i\y‘“‘iw“ Som o series of runs were performed that differed oplv in their initia] randon . : _ . _ A /7“/&‘4
wmﬁ:_s_e_qd,(Figure 8a shows t)he average and standard_deviation of popuifis “scalingir Otnei see fi c;u-e 9). This “ N
lation fitness (a typical statistic) of five separate runs. These statistics sho oo and i strategy used in the Hin-
that while the initial and ultimate behaviors of the simulation are quite con ost [, gj;;:l:gf (i:;lecllfogzl Cn;c;i?l' even the most fit individual can make at
sistent, there is significant variation during the middle generations. Howeve Wopulations, Winners ;almm%mwl
figure 8b shows that this variation is of a particular form, viz., the geners uickly. h&%m%me
tion in which Phase 1 begins. Recall that this event depends on two Winner, )
finding one another out of a large population of other potential mates, an, i " .
while the increasing levels of 1s and ?s during Phase 0 guarantees it wil 22 Initial ratios

A _ occur sometime, the generation of the actual occurrance is highly variable, ‘can fi ca e .. ) .
W‘A‘j ~ .~1i  We hypothesized that increasing population-size (N) would, because o &litativresi,ilglfxur:l:rl:ti;.l. a'lx‘lﬁz f:)f li,osilblef initial p0p91at10n compositions using
*m‘? i entral point of the Hinton and Nowlan paper is
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Avg(Fitness) as function of trlals, Init. pop. ratios

varying population size 46/23/31
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Figure 9: Population size. ] ollrles 7 Figure 10: Varying initial population.
way T

xpected to introduce new alleles in this manner but this run was without
ation, but without mutation how is this possible?!

‘ In order to explain this effect, recall the binary encoding of the three
lele values described in section 2.1: It obviously takes at least two bits to
esent the three allele values 0, 1, and ?. In our simulations the encoding

ceedingly slow. Hence, ¢o must be significant. With the analysis of section 3.2
we can make a more refined statement; figure 4 shows that an individual hai
little additional fitness until he (or she!) contains about 7 ?s, which sugges
go must be about 35%. Similarly, an individual is completely unfit if it co
tain even one incorrect 0 allele, so ro large simply delays the time before, b
chance, Potential Winners are created. 4

With these considerations in mind, a wide range of initial populatio

were explored. Figure 10 shows a typical variation. In this run the initi Allele | Bits
ratio of ?s to 1s was maintained at 2:1 (46% to 23%), but a higher rat: 0 10
of incorrect Os than correct 1s was used (31% vs. 25%). The result w 11l
to significantly slow down the population’s ability to converge on the corr ? 0*

solution. There is a long phase (which might be viewed as a Phase —1, comi
before the Phase 0 mentioned above) during which Os are steadily replace
with 1s. However, once the number of Winners produced in a generation
sufficient to ensure the positive feedback of Phase 1, this population behaw
the same as the original one.

h star (*) indicating “don’t care”; i.e., this bit can be either 0 or 1. Given
random procedures for creating the initial population we should expect
ut half the 7s to be of each type; call the two varieties 7y and ?;.

Iﬂow consider what happens when crossover is performed between two
ents in-our initial population of only 1s and ?s. If one parent contains a ?
tie 7 variety and the other parent contains a 1, it is possible to produce
ffspring with a 0 allele by performing the crossover at the point between
two bits of the allele. Despite the fact that the population begins without
0s the genetic material for producing this allele value is still present due
he redundancy of the encoding. Tt would obviously be possible to modify

5.2.1 Poor man’s diploid

Experiments with varying initial population ratios produced another curio
result that helps to make an important point about representation and t
GA. Figure 11 shows a po;lmlatlon that was begun with 50% 7s and 507 ossover operator so that it operated only between alleles rather than

and no 0s. Yet by Generat t 8% of the population’s alleles-aTe teen bits. b T : ; :
F)L - : ) ut th “ free” Spir — A
the mutation operator were in effect (see section 5.3 below), this could eotion él) 1518 28210 against the "semantics free” spirit of the GA ‘




Richard K. Belew | Evolution, Learning, and Culture 33

32 -

5.3 Mutation

One important simplification of the Hinton and Nowlan model of evolution is
the absence of any mutation effects. “Mutation” is sometimes used to refer to
~ any and all modifications to the genotype passed from parent to child. In the
GA, however, mutation is used to describe only random modifications. These
play a much less important role than the principled modifications generated
* by the crossover operator (see section 2.1), so that mutation is properly con-
sidered a “background” operator in the GA. Nevertheless, mutation has been
shown to play an important role in the GA, viz. preventing “fixation” [10}.
That is, mutation provides the only mechanism for reintroducing allele values
that may, by chance, have become removed from an entire population. As a
result, without mutation it is possible for a population to converge prema-
turely on a suboptimal solution. On the other hand, it is also true that if the
mutation rate is too high, this random operator effectively stalls progress of
the GA by breaking up the schemata processed by crossover.

Mutation rateg a. i defined in terms of the probability of chang-
ing bits, but when the alleles are not binary this definition is sornewhat prob-
lematic. For one thing, it allows “silent” mutations (i.e., not changing the
allele value) if the *-bit is the one that happens to change. Alternatively, we
could modify the mutation operator to ensure that all modifications changed
.allele values.” However, this seems against the “semantics-free” spirit of the
~GA, and so the simulations presented here simply treat the individuals as bit

trings of length 2.
“* A number of simulations were run with varying mutation rates; some of
" these results are shown in figures 12. In some respects, these curves are in
\greement with intuition. Small mutation rates (107°) have little effect,®
ttermediate mutation rates (1072) slow down the genetic search, and very

NoZero: 50/50
Allele rations

7 — Undefinded
- Correct

©- incarfect

\d o

°~o~°_?n
+ =

QEmQEmQe—Q—0—Y¥—V

5 6 7 8 010\11213‘4‘516\7\6!0202\22232425
Generation

0 o—

t 2 3 4

Figure 11: Initially no Losers.

josity : t of the GA's repre
This is more than a curiosity. It suggests an as ’ec e PO
sentation that might be called “Poor Man’s Diploid.’ The ability of diploid

chromosomes to maintain recessive alleles while typically expressing the dom

i i tics. This mechanism
i central component of population gene :
inant alicte e 2 alternative solution should the environmen

&W&M—ﬁ—#’ - T oaid s th igh mutation rates (0.2) disrupt the search entirely. However, notice that
(W' In_true diploid species, h%%e"i": :’o;t:c?sall:le. uring the early Phases 0 and 1 an intermediate mutation rate (10~%) has

representational redundancy of having two full

Almost all versions® of the GA (including this one) use a singlz, haploi
chromosome, but these experiments show }‘ww any encoding redu.n ancy
have a similar effect, even in haploid species. .As soon as there 1s'aﬁy spareg
representational capacity (e.g., the *_bit in thTs case), 11’: is potentially aval
able to hold information that is not of immediate functional consequence.

: 3
From another perspective, this effect helps to deflate a stn.ct (;ada;f:;
tionist” position that sometimes argues that any and lel.sustame lge:f e
variation is a direct reflection of increased fitness. This is trutla only i i
representation is miminal. Otherwise, u'nus?cl. representat..lona. 1ctz?.paa 3{)
available for other purposes, such as maintaining alternative solutions,

also including use by other adaptive systems (see section 7.1):

bout the same effect as that of no mutation whatsoever, but then slows
lown the fina} convergence of Phase 3. Thus there is a nonmonotonic relation
etween mutation rate and population convergence. _

In order to explain these effects, we must notice that mutation has two
isounterbalancing effects in the early phases. The first effect is to “clobber”
members of the Nobility. That is, an individual whose parents passed on
tentially Winning genetic material is ruined if any of it is mutated. The
ond effect is to increase the variance of the Commoners. With very small
ation rates, neither of these two effects is achieved, and the result is the
ndard simulation. With intermediate mutation rates, the fragile Winners
likely to be ruined, but the variance of the Commoner population is

“This may become necessary to accurately capture real genetic phenomena such
jack mutation,” where the probability of mutating from allele X to allele Y is not equal
the probability of the mverse change.

8To be concrete, a mutation rate of 10~5 means that with a population of 1000 indi-
with each individual of length 20 and with two bits/allele, there is only a 40%
Yesithat anyone in the population will be changed at all.

6Grosso’s thesis investigated diploid populations along with other, more biologica

plausible variations of the GA [16).
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ness of other conspecifics (i.e., members of the same species) via nongenetic
informational pathways.

Qur basic model can be extended to investigate some of the issues raised
when the constructs of culture, evolution, and learning are juxtaposed in this
way. Obviously, such a mode] will be macroscopic to the extreme, just as the
genetic algorithm is a gross simplification of evolation and random guessing a (il -
gross simplification of learning. However, when the object of investigation is "
the interaction among three such extraordinarily complicated systems, such
radical simplification is necessary.

Mutate - Fitness

6.1 Dual inheritance

G
mne@a3a~""m
=

Boyd and Richerson have developed a “dual inheritance” model encompass-
ing both evolution and culture that emphasizes the two ways, genetic and
nongenetic, in which conspecifics can pass adaptively useful information (6].
Following a suggestion of Hutchins, we inject this notion of culture into the
Hinton and Nowlan model as directly as possible: If and when a parent be-
comes a Winner, they confer upon their offspring a cultural advantage (CA
. that gives these offspring a better than average chance of guessing the correct
value of the learnable alleles. So, for example, if CA = 0.1° the offspring
it of a Winner has a probability of 60/40 chance of guessing each of its learn-
' able alleles correctly, rather than its normal (culturally disadvantaged).50/50
. chances. The rationale is that parents have some ability to “imprint” their
fispring by skewing the allocation of random trials somewhat. A slightly
more elaborate of notion will be considered in the next section, and the more
eneral issues of modeling culture are considered in section 7.
Figure 13 show the results of this modification using CA = 0.1. A CA N
allows a population to find and then converge to a solution more quickly, &
imply because more effective guessing broadens the shoulders of the search 3
pace around the correct answer still further. Just as learning creates a basin
f attraction around the solution needle, information (in_this case passed [fj-

xtra-genefically) that makes the learning/guessing process more effective ii '

road i in still further. &

- The second observation, however, is that a CA removes some of the pres-
ure to achieve optimum performance; i.e., while the population converges
ore quickly, the solution it converges to is not as good as without CA. The
eason can be seen in figure 14, comparing the allele ratios with and without
A. The most striking difference is that the maximum levels of ?s and 1s
ave been reversed. The population with CA reaches a ratio of about 80%
s and 20% 1s before beginning 1ts slow descent through Phase 3. Because
n individual is now more likely t%ﬁ?ﬁﬁ"’éﬁe alleles (7s) correcflx (be-
ause of the CA imparted by its parent), a much larger number of 7s can be.
g v . . st
olerated and the selective pressure against them is much reduced.

%The pressure is not entirely removed, however, as the shight slope on these

lines indicates. It is still always advantageous to replace a ? with a 1,

R o I W Do
.l |.2\3 14151817 1819 202122 2324 25
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Figure 12: Mutation.

As the mutatioh rate is increased, no additional
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harm can be done to the already-ruined Noblhtyi) brt golm\;vnionrifersss aTri1 e
i utated into Potentia ners. I

better and better shonce o bel\?i%ien; new source of Winners. Finally, if the

. jate mutation rates pro ‘ ce i e
lnflira,r‘ilii(ila;ate is made extremely high, the ability of crossover to p
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SQI“{“;‘; in Phase 3, the dominant effect of muta.txonlls t;) 11311?0%?:1(3 V%sl :l?lt;s
latio i tirely of Poten X
i be composed entirely
lation that would otherwise . el
II)tc?suobvious that this will slow the population’s final convergen

not changed dramatically.

S ey vr\

<

$
3

6. Incorporating culture into the model

model and our extensions to .it point to’ subs
f individuals and the e\{olutlon ?f spe::z:;
such individuals can be coupled to forréile(:ﬁae;tgvte};ehif::;da:d‘sﬁ;;geess; o
i spe :
b Whendw'i Znifri;:?:dh;ﬂzne rp;te at which indi\./idual.h}lma,n; let;m
e Sh'ape t lh ( -erha,ps 12 orders of magnitude) is ,(.!}11136 strlxlfmg.l (rr tie;;
.the m1sm?1 ct alt? least in the case of the human species, addltlona. a .ap.
b seen;Set a o developed to allow the learning experience don.e ind .,
t;O}:eef:ome useful to other individuals much more qulckl:e:ﬁl th_d;t;g:ltlloyws i
ture can be viewed as a third, interpos.ed adapltlve sys om that oo il
hl;rrd won knowledge learned by an individual to improve the € ,

Hinton and Nowlan’s origix?al
tle ways in which the learning o

'This value was used in the simulations described below unless noted otherwise.
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Figure 13: Effect of CA on fitness.
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Figure 15: Winners with CA.

shows the number of Winners and Potential Winners, both with CA and
without. It is interesting because it shows that even though a population
with CA does not produce as many actual Winners, it does produce just the
same number of Potential Winners. CA can therefore be viewed as making
he population something of an “underachiever.” CA is useful for initially
iﬂviscovering the solution, but it also removes the sem
0 push the population to its optimal erform; with all 1s
It turns out that this diffidence can be corrected by introducing a very
bw mutation rate, Figure 16 shows that a combination of cultural advantage
nd mutation produces a population that converges even more quickly than
ith cultural advantage alone, and finds an equally good optimum. Again, -
Afacilitates the initial discovery of the solution “needle,” and mutation

hen increases the pressure against ?s by increasing the probability that they
1l be replaced by 1s.

2 Plasticity

lowing some information to be passed_extragenetically from generation
generation allows a population to maintain a higher ratio oﬁ earnable
1sus genetically specified alleles, for.longer. Why mj ht such “plasticity”

_ us? Qne reason is that learnable alleles can be modified in the

X ones cannot. A series
t. At fixed intervals

ging environment, while genetically Fxed
g itsimulations were performed to illustrate this poin
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(25 generations in this simulation)

correct answer) were changed; this can
htly. Figure 17 shows the response of various populations $

First, a standard population, without mutation o
le to track these environmental changes. Witho
alleles, the population converges on thel

search space slig
this sort of modification.
cultural advantage, is unab
some mechanism to reintroduce lost

early solution but is then unable to sear
this “premature convergence” effect is we

literature [9].

Mutation is an extremely robust me
back out from (what has become) a ma
solution is relatively close to the old one,
of mutation has a good chance at success.

changes are not terribly intelligent
Cultural advantage was success
vironmental changes (at generation

sus genetically fixed alleles at these posi
Notice, however, that the population with
the environmental change at generation 50.

individuals to have a higher ratio
fixed, including (it so happens)
change at generation 50.
but once an allele becomes gene
environmental change than one wi

fully able to respond to the first of the e

one of those involved in the environmen
A population with CA will remain more pla
tically fixed it is no better off in the fac
thout. The best solution, as shown by

several of the bits of the needle (ie
be viewed as moving the needle in th

ch any other portion of the spac
1l known in the genetic algorithi

chanism for allowing a population
ladaptive solution. When the ne
the simple random-walk strate
But as these curves show, rando
and so this can be a slow process.

25), exactly because it had learnable v
tions. This was the expected res

of 7s, some positions are still genetical

CA was not able to respond g
While cultural advantage allo

¥rack environmental change very well.!

Bl/'oadcast vs. lineage models

anis

pepulation

“dual inheritance” notion of culture broadens

“ : 1 the range o i

,th:gufllllozll;ch ;{1; 1?xpenence acqu.ired by one indivi%iua,lf iﬁ;s}i: l‘tfedcl::g:

o ha.ve 0 erdthan requiring that all information be encoded
ieall, ,f e have totwe some useful (albeit unspecified) information to

essod Lrom nfaltien ho ;hlld extra-genetically. But now that the trans-

ton of infors cl;)n as been cleaved from a strictly genetic basis, cult

N al or a broadened range of recipients for this informati,on t};l;IT

1y via li i
: neage, we can tell it to other, genetically unrelated members of

own the stree

critical parameter.

e s .
lation. In other (more metaphoric) words, when we Bind the secrot

needle, we don’
, we don tI hz;ve to tell (only) our own children; we can tell th
n fact, we could “broadcast” the CA to as many a:

bllowin i illin Ki ,
f vironngle::ugf:s f;f:n;ip:;:glg tIi{l;t;};eg l:hWould ble interesting to explore how quickly
n of the si : ve the population able t i i
e size of environmental changes (the number of bits altoer::iajd:a::-.b eS;)r{r;xla.:l)é
ecte
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th curve in the figure, is the combipation of-beth ; ‘ ¥
vantage. This gives the population the re o and culiusa! 5—
fobustness of mutation. T tw ansivencas of culture with the FE
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Broadcast

he final curve of the figure.

In .
summary, biological evolution proceeds

- Aud=18
- Aude18;CA=0.08

emed""M

sing this i i i
g this information to conspecifics that are not bjological offspring
__\‘

Discussion

............
-------------

232527203133 3537304143 454748

Modeling culture

Generation

{ir current experiments have only b
e. They treat culture simply a}; azg:;:: addr?ss o Phenomens. of ol
> ! -genetic i
ﬁ‘fonr:::o;e:a‘bs;toﬁ:;cces:lful se'a.rc.h can be gassed f(r:g?r? %ietZZszgt'WhICh
o for ot ;nzt.el of 1nd1v1d.ual lives is so crude (viz., a numlt()m t(;
il ettings oi_‘ Pla.stxc alleles), culture takes o’n imilach
creased probability of success at this guessing ga?ns:;méaﬁly
. Still,

' exercise has been useful i i
e work. in that it has helped to define a set of issues for

Figure 18: Broadcast CA.

we like! We might expect this use of a powerful new communication abili 3

to improve the ability of a population to converge quickly.
Another set of simulations were run investigating the broadcast of CA
arbitrarily selected members of the population. More specifically, once 11

needle is found by a Winner, CA is passed on to an audience of B randoni

selected members of the next generation. Typical results are summarize

figure 18. This figure compares a standard run (with no CA), a popula
with CA passed in the “lineage” fashion discussed above, two runs in whif
the CA is passed from a Winner to either B = 2 or B = 16 randomly select;
members of the next generation, and finally one in which again B =16 w
the CA has been reduced by half, CA = 0.05.

There are several interesting things to no . First, broadcasting

CA can be more effective than passing it to just biologica, by
T a fairly large audience is_allowed to benefit. Comparing the lineage

B = 2 results, we note that the latter does significantly worse; giving the

to two, randomly selected members of the next generation is less effe

than conveying it to biologically related ones.!! The reason is that it d
little good to convey CA to an offspring that is genetically unfit to receivé
The probability that a randomly selected offspring will be a Loser is m|

higher than that of a biological offspring of a Winner. In other words, m
lls on “deaf ears.”

of the wisdom of broadcast Cf

;In our 3

u model, Culture. has been reduced tO a Slngle real number l‘eﬂeCting
! ltural a.dva.nta,ge m the Otherwise I‘a.I).dOIn pIoceSS Of Sea.lchlng fOI a
133481 . y i |

on It 18 C llf rl‘ed b an lllleldlla.l that ha-s found the COI‘reCt l t‘
o1 onie. solution

e lnembel's Of the next genelatlon. EVen 111 thls Crllde model we can

u]sh two Sepala.te 1ssues that S€Em common to any model Of Cultule
bl

ifact (object of the t iesi
r ;
ssion)._________________l_mss.lmans 1) and the audience (recipients of the

our model, the artifact is a si
: single real number. N is i
. er. Not
e ait;:io;sr?l, gcllolLa,l notion of culture and certainly ;ril;at t]}*éls ety the
b bl positif:; 131‘ }r:ltsxgli?tzltl the entire society /population gz;nd):;citfi;yr:l}lle
. all the critical i ’ sl
"} D positic : : l issues of language —
escribe their solution, how others undefstafld thi}:soge::; cet',s'flll
iption

ignored in favor of a sin i
' gle variable i i
e o oo ngle i capturing the effectiveness of an

We ha i : .
ave :;epleﬁment?d vlzlt? two different notions of audience. The first
age as only biological offsprin ace. -he nrst,
g of successf -
ng cultural advantage. Our second, “broadcast” model Hf;‘:f;:mdgdllmls o
closer to

lineage model the number of biolo

11 This comparison is a bit simplified, since in the
or less, than two.

offspring to which the CA may be conveyed can be more,

41

But if the i
= 16 curve S:xs }CS) r?;ozdcast to a su.fﬁciently large population, as in th
xtreme, if th,e CAism (:1 communication can become more eﬁ‘ect,ive In the
he next generation th'a be available by a Winner to the entire popul'at' :
owever, it is also 1 1s becomes a clear advantage over the lineage 101(11 o
age (whatever it m?a»;c;n;ble bo expect the “fidelity” of the broadiasl;no "
Ve can model thi ght e) to erode as the size of the audience i e
is as simply a smaller CA, and this condition is lg}fssvalf,eis.
n

fom_parents to children via geneti i tial solutions

e Via g netic material. Introducing ‘

uct allows us to consider both the effect of allow;lcgma, ;a?if: 1? -l
0 pass

— P : :
genetic information to his or her own children, as well as th
) e offect of
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b ,
V\J\M capturing culture’s ability to communicate information to arbitrary, nonbio- . than ur model, cult indivi
. logically related elements of the population.'? chance, and anything that makes an izgﬁelpsllﬁdwlduals uess better than
Another key distinction has to do with the “age” of the audience. In ; their fitness. ual better at_guessing improves,
3 the simulations reported here, each generation is disjoint in time from pre- The vantage of cult .
© | vious and future ones.!3 Similarly, the audience for a successful individuz}l’s robustness it provides a po ula.tilgf o sted b - ifi .
i cultural advantage is always restricted to members of the nexf; gener.atm ' improved ability 1o saess conead the per ] tC of e tal change. An
S only. This was useful for investigating “dual transmission” guc‘astlons of inter- | terial to learnable vs. genetically spegﬁzz aﬁ°ln to deyote more genetic ma-
S generational genetic and cultural information. However, it is also possibl allowed the population to track environme tane ES- This additional plasticity
-¥ (o consider intra-generational communication of cultural infOFmati?n._ It is tural information, rather than being tra o : changes, through changed cul-
¥ difficult to imagine the value of intra-generational communcation within the; solutions pped into obsolete, genetically fixed
. current model, but the next section suggests a role for this kind of “symbiotic We can envision sev -
. o eral i :
« V% search. In fact, it seems likely that these two types of cultl.xral transmission beyond our current model a‘:lt;lz:undmnal_ advantages for culture that go
\i © & will play profoundly different roles in an account of evolution, culture, an quire intra-generational communicatlilscessanly more sRecglative. These re-
o 2 % learning; this observation dates back to Vygoi':sky [29] N a single generation (in addition to the jIII] tamong peers within the timespan of
s S *2 Finally, it is important to note the way in which our ablht}.r t(? r'nod used) and attempt to capture a not fr-genera.t':lonal communication now
o % % culture is constrained by our model of individual leafrning. QOur individua " The most straightforward ext ion o symbiotic search
& ¢ spent their (bleak!) lives making a set of random, dxscc_)nnected guesses. In the critical event of the two Wisnswnﬁd our current model is suggested by
&~ this simple model, the only obvious way culture can enrich these individuals” population into Phase 1 (see sectr%ers 4)nd1(1;g one another and igniting the
\ . 1on 4). LCurrently, mates are sele '
cted at

lives is by making them better guessers. However, as we allow more s
phisticated learning mechanisms we are given the opportunity to pass mo

p

s D " e G

Ll

Q interesting, useful artifacts.
> ample [22]. His individuals use several PDP networks for learning and a
Ty ¥ given the opportunity to learn both from direct experience (with the en
g ronment) and “mediated” experience (with artifacts left by others). If we
& T interested in the central questions of culture and language, especially intr
\5 generational communication, we must expect that our models of individu

lives and learning will contain more complexity of this sort.

7.2 Functional consequence of culture

A G
L PADpN O

Hutchin’s “citizens” provide an excellent ex]

andom from the entire i
§ population and this event is th i i
c(!;ljd(though V‘%}xaranteed‘) and slower than it might be. g ch‘;fe k;;gehlli, siomm
o I;:la,use (;fmers th> “find one another” more quickly, this wouldc Tmsm
igationyo;x“pe ;tt? ihz population’s search. There has beén signiﬁcantai mOSt‘
restricted mating” strategies with i Hon
o thi gles with the GA literat
o e}}:: Selems' very rfileva.n,t, but we envision cultura.lly-basedurf'::ec(ltle - iy
d:ﬁoed amc;; e, I}f1 individuals were simply allowed to communicate s e re.
e simi?a .]t>_er aps errorful d_escription of themselves to potential ?nm: rle‘;
A ;l b1es in these descriptions were used to bias mate selection aV\(;'s
‘sistent witi ItI;::aCl:r'rtr'lorf hicely tobﬁnd one another. This observat,ionuil;
“ : 1tical role attributed to mat ion i
tiiche construction” of modern theoretical 'bioléctgirsg;ftlon i1 the models of

An immediate benefit of even the crudest attempts to integrate culture in
2 model with learning and evolution is that it provides concrete proposals
exactly why culture is valuable. Anthropology typically takes as axioma
that culture is important and then proceeds to catalog and explicate vario
cultural activities. However, this leaves a gap as to why culture is impor

%

i

H

1
t
A

that threatens to undermine any theoretic understanding of culture or how

relates to other aspects of individual behavior in a physical environment.
casting the problem as one of adaptive search by a species, we can motiv
culture in very functional terms of improved performance.

Our model illustrates two clear advantages for culture. First, populati
with cultural advantage are able to converge on _a solution significantly fas

12This mode] co

would limit the broadcast of information to “near”_neighbors.

13Genesis has a very convenient parameter, “generation gap,” contrqlling the over
between generations. Simulations investigating interactions between this parameter

cultural variables are planned.

1 be refined further with a spatial distribution of the population tHE

" A seconc'i construct assumes a more complex, ¢

evera:l different, mutually exclusive regions ,w
ndom into some one of these regions. The prol,)le
o allow specialization with respect to each of
ct.tha.t- an individual does not know “at birth”
’.\m’ll f_ind.ltself. Culture could play a critical role
feczab?atzon without the genetic speciation that
\.p'u!atlon. We imagine a cultural mechanism that
lities of a new offspring with the range of envir

conditional” environment
ith individuals thrown at
m facing the species, then

the conditions, despite thej
the environment in which
here in allowing adaptive
rreversibly partitions the
helps to match the genetic .
onmental conditions to be

nother possible role we see for culture in symbiotic éearch is when th
e

ion to be found requires the dist i

: requi 1stinct abilities of m indi
;:1;1 hE(o:lr tex.ample, imagine that the “needle” being fow.?rll‘z :al;a:)lugri:i -
T 'Wice as many bits. Imagine further that we add only a sﬁé?:

Something like a “Personals” column!
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bit to the length of current individuals, with its semantics being whether the
individual was “good at” the first half of the solution or the second. Finding
the needle would now be much harder, requiring not only the construction
of two individuals specialized at the “jobs” -of the first and second halves
of the needle but also that these two specialists be able to communicate at
least enough to find one another and work together. This construction is
admittedly contrived but it helps to illustrate yet another important role
for culture: the solution of problems more complex than those soluable by.
" individuals working alone.
In summary, we see several clear, functional motivations for what culture
can add to an adaptive system using evolution and Tearning.Culture helps:
to expedite the search process by disseminating information’ about success
more quickly than genetic mechanisms alone. Second, the extra-genetic ing
formational channel provided by culture helps to keep the genetic description
more plastic, a characteristic that can be critical as the species’ environmen
changes. Culture may also help compatible mates to find one another, to
allow specialization to environmental niches despite indeterminism as to the
niche in which an individual will find itself, and allow groups of individual
to collectively solve complex problems that would be beyond their isolated
efforts. Our current simulations provide some evidence as to the efficacy ¢
the first two of these, while only suggesting the last.

CULTURE ' %
Y= [ e

-,

Specles Behavior

v

EVOLUTION

Figure 19: Robot arm.

depends both on the artifacts made avaj

genetic material given them b lable to them by culture.and

! v y evolution. Second, this i
ture the way in which the plastic systems (“joints”),of ;i'ollrtrlltiijx h:fl)ts .
$ ) ure

learni i :
ing mediate between th<? more rigid constraints (“bones”) of extant
faits.. Fu.lally,."the relative size of the three
rl;e ative inertias. That is, the process of
mbersome than the process of cultural de-
wer than the process of individual learning.

7.3 Adaptive algorithms

It is possible to view the interacting processes of evolution, learning, ang
culture as adaptive algorithms that search huge spaces (environments) fg
potential solutions. In this view, our criterion for success changes from accy
rate modeling to efficient computation.!® In this section we outline some
the basic features of evolution, learning, and culture as adaptive algorithm

One obvious approach is to view evolution, learning, and culture as thre @
distinct and competitive types of adaptive algorithm, looking for their rela
{ive advantages and disadvantages. It certainly appears, for example, tha
the local search performed by most gradient_descent connectionist learnin apture environmental regularities of

aTgon ms makes it appropriate for much different adaptive problems ‘ uasive. R‘?fel‘ing to interactions amon
the kind of gwg performed by something like the GA. ‘ i
Alternatively, we can view evolution, learning, and culture as componeni#g

of a single adaptive system. Figure 19 presents a view of how the three sy
tems rmight interact, as joints of a single movable arm that each help t}
ultimate “fingers” reach a desirable point; this is obviously an elaboratio
the picture of Baldwin’s arm of figure 1. This image is meant as evocat
metaphor, but it does help to make several observations. The first is tHcH
mutually constraining relationships among evolution, learning, and cultuf
Culture must be built upon the results of evolution, while individuals’ 1

ezz:{:t c;i ;?;rga.ri?z}in ada,l;:tive systems will depend on the time
: which we observe them. '
fil'l;fle scales of relevance to such systegs eoereeore ot least three
) bl
t ;uier::lltt forlr:xs of adapt‘atlon. On the shortest time scale i
fell f"ior , t;alnce adaptive — systems continually change thexilx-‘
Dehavior n g course of lslolving each problem situation they
««.. On a somewhat lo i i i
tems make adaptations that ar beomerven s o elligent e

. , e preserved and remai i
for meeting new situations suc main available

. cessft ' i
scale, intelligent systoms evolve'essfully. +++ On the longest time

int

corresponding to three

151n the background, of course, is the “Holy Grail” of cognitive science: correct mod

of naturally occuring phenomena and efficient artifical computations will turn out ¢ 1
two faces of the same solution. .
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Figure 20: Environmental wave.
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maller than the cumulative experience of entire societies, which is in turn
much smaller than the cumulative experience of entire species. In each case,
he adaptive system depends on a repository for its accumulated experience
at is appropriate to the time scale of its regularities and the mechanisms
vailable for modifying this representation.
. These are only a sample of the large set of important issues that arise
hen we consider any one adaptive system (e.g., learning, culture, evolution)
@s components of a single, grand adaptive system. We hope to investigate
these in terms of the time scales in which they find invariants, the information
tructures used to represent regularities, and the way regularities discovered
y.one adaptive system serve to constrain the search of the other systems.
Another intriguing possibility is that the environmental regularities are “self-
imiilar” across time scales, i.e., fractal. If true, this would allow self-similar
igdaptive techniques to be exploited at several levels within the cognitive sys-

m. An adaptive mechanism that worked at evolutionar

y time scales might
ually be useful at the level of seconds, just because the regularities they
espectively tracking have self-similar structure selections. For example,

called “selectionist” generalizations of biological evolution of species have

been used to account for the creativity of individuals [8] and the develop-
t of cultural processes like science [7,20]. The argument is that while the
bstrates” on which evolution, creativity, and science work are of course
dly different, approximately the same selectionist adaptive algorithm is

ive in all these cases. Certainly this must be considered only specula-
n at the moment, but if true it would help to explain the fact that the

arently disparate phenomena of learning, evolution, and culture are all
entral concern to modern cognitive science.
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