
Using Mutual Information Content of Protein

Sequences for Classification

Chris Hemmerich

March 28, 2005

1 Abstract

Protein sequence classification is a challenging problem. We are attempting to
use the Mutual Information Content of protein sequences to provide an alter-
native method of classification. Since the 3D structure, and ultimately clas-
sification depends on the relationship between amino acids within a sequence,
measuring the dependency of acids at different distances in a sequence may
prove a valuable classification tool. This document contains some preliminary
results, but is primarily a description of methods used to this point.

2 Mutual Information Content

The goal of analyzing Information Content is to provide an alternative method
of measuring the relatedness of protein sequences. We hope to use the protein
sequence to generate numerical data that is useful for comparing sequences.
Converting a character sequence to numerical data opens up many possibilities
for using existing areas of study, including machine learning techniques, to study
biological sequences,

The method being tested for scoring sequences is to traverse the protein
sequence from beginning to end, and at each position record the protein com-
position of a certain number of blocks, each separated by a set distance, termed
the gap length. The simplest version of this involves two blocks, each of a single
amino acid. Using these parameters, the protein sequence

KTCVV

would generate the following pairs for the given gap lengths

0 1 2 3
KT KC KV KV
TC TV TV
CV CV
VV

1



Once this information has been processed, you can determine how significant
each pair is by comparing the number of occurrence of that pair within the
sequence to what would be expected by chance. The

(PiPj)

where Pi and Pj are determined by counting bases in the sequence. The
mutual information content of a given pair for gap length r is

Pij(r) · log2

(
Pij(r)

PiPj

)

To find the total Information Content Score (I) for a given gap length, sum
over a subset of the alphabet of i and j including only the amino acids found in
the sequence:

I(r) =
∑

i,j

Pij(r) · log2

(
Pij(r)

PiPj

)

This score measures how much information knowing the identity of the first
amino acid provides you about the second amino acid. In the special case that
the positions are independent

(PiPj) = Pij(r)

and the logarithm, and thus I reduces to 0.

2.1 Score Vectors

Computing I for a single gap length is unlikely to differentiate sequences enough
to provide for successful classification. Considering multiple gap lengths allows
us to increase the dimensionality of the search space. These scores can be stored
in a vector that can represents a coordinate in a space with dimensionality equal
to the length of the vector.

V = (x, y, z, ...)

By using a continuous set of gap lengths that begin with 0, you can generate
a score vector, where the a score is retrieved by accessing the vector at the index
corresponding to the desired gap length. The length of the vector is only limited
by the length of the sequence being analyzed.

Intuitively, smaller values of r should have more deterministic power than
larger values, as amino acids near each other on a sequence are generally more
strongly dependent on each other than remote amino acids. Preliminary tests
of the classification ability of these scores show that this is the case.

Once a vector of I values has been obtained for a set of sequences or families,
any two vectors can then be compared with the following equation.

2



[V1 − V2] =
√

(x1 − x2)2 + (y1 − y2)2 + ...

This equation determines the distance between two vectors in a space con-
taining a number of dimensions equal to the number of r values contained in
a single vector. For this equation to function correctly, the vectors being com-
pared must contain the same r values. The vector can be of any length, and the
values of r used do not need to be in any particular order or contiguous.

2.2 Increasing Block Count

This method of calculating information content is not limited to pairs of amino
acids. Larger groupings contain more positional information, and information
content. However larger groups result in a smaller number of groups to work
with. We hope to find the point that maximizes our ability to classify a protein
sequence.

We have looked at amino acid triplets, defined as three acids where aa 1 and
2 are separated by a gap of length r and aa 2 and 3 are also separated by a
gap of length r. For example, the following sequence shows 3 blocks with a gap
length of 2.

LWWGNPGFL

The information content equation can be expanded to calculate scores for
triplets.

I(r) =
∑

i,j,k

Pijk(r) · log2

(
Pijk(r)

PiPjPk

)

The equations can be expanded beyond three blocks as well, by increasing the
number of block variables, but is limited by the length of the protein sequence
being studied.

2.3 Increasing Block Width

Another potential method for gaining additional information content is to in-
crease the width of the blocks considered beyond a single amino acid, to include
multiple adjacent amino acids. For example, the following sequence shows 4
blocks with a block width of 3 and a gap length of 3.

QLMWKIAPPFLAFLTYSGDVTGVVM

The equation for the information content of this configuration would be:

I(r) =
∑

I,J,K,L

PIJKL(r) · log2

(
PIJKL(r)

PIPJPKPL

)

3



Where I,J,K, and L represent all blocks of three adjacent amino acids found
in the sequence.

It is worth noting that only exact matches between blocks are considered by
this program, and there is probably room for improvement if a more sophisti-
cated system could be used to allow some degree of error within this match. As
we are summing over a dictionary, allowing fuzzy matches would be considerably
more complicated.

2.4 Gap Handling

When dealing with aligned protein sequences, gaps and other irregularities may
have been introduced. In the instance where a sequence gap occurs within
a block, that iteration of the algorithm is discarded. Sequence gaps between
blocks do not affect the results. Blocks with Gaps in them are not counted
when determining the probability of a block occurring randomly in a sequence,
therefore, even in a gapped sequence

∑

i

Pi = 1

This decision leads to artificially high I scores when gaps significantly reduce
the number of pairing considered. For example, when working with block size
5 and block count 4, there maybe 60 ungapped blocks of length 5, but only 7
ungapped sets of 4 blocks. Under this condition

Pij >> PiPj

2.5 Score Parameters and Sequence Length

As the block width (w), block count (c), and gap length (r) increase, the length
of a single entity considered by this algorithm can become prohibitively long.
The length can be determined by the following equation

L = (w · c) + (r · (c− 1))

Incomplete entities are ignored in the calculations, so the number of consid-
ered matches in an ungapped sequence of length S is:

(S + 1)− L

3 Results

Formal results are forthcoming, but test among 5-20 protein families encom-
passing 200-20,000 sequences, shows a success rate above 90% in most cases.
In cases so far, the dimensionality can be paired down greatly and still give
results above 90%. Chosing a subset of dimensions that work well in all cases
is a top priority. A machine learning toolset called Weka was used for these
computations, which is discussed in more detail in the next section.

4



4 Tools and Procedures

4.1 PFAM

The database of Protein Families and HMMs is a collection of protein domains
and conserved protein regions. The database is quite large, including over 5000
families, some of which contain tens of thousands of sequences. I work with
a hand-curated subset of PFAM called the PFAM-A.seed collection, which is
a small representative group of the family. A multiple sequence alignment of
these seed sequences is used to generate the full family.

Sequences in the PFAM database have already been aligned, had gaps in-
serted, and been trimmed to best fit into their family.

4.2 PostgreSQL

The portion of the PFAM database I was working with is available for download
in text file format. This file is quite large, and retrieving sequences from it could
be quite slow. Additionally, from testing different families within PFAM, I
was generating a lot of different score vectors and having trouble keeping them
organized. To resolve, this I designed a relational database to store PFAM
families, sequences, and pre-generated score vectors for 20 variations of block
count and width for each sequence in PFAM. I wrapped the tables with perl
modules for easy manipulation of the data.

With this database, I can quickly perform tests on new families, and test
different combinations of block parameters. The goal is to be able to automate
large scale tests more easily.

4.3 Weka

We are using a java-based machine learning package, called Weka for our classi-
fication tasks. Current work has involved only k-nearest neighbor classification,
although more robust methods may prove better. Weka provides automated
tools for data normalization, random extraction of test data from training data,
and coss-validation. Weka is freely available at http://www.cs.waikato.ac.nz/ ml/weka/

5 Current and Future Work

I am currently analyzing the quality of the various gap, width, count scores,
looking to remove noisy dimensions. I expect to be able to generate comparable
results with a small subset of the 400 scores computed for each sequence.

I am also considering different methods of modeling the prior probabilities
of sequence blocks. Using the frequency of blocks within the entire PFAM
database rather than a single sequence is one possible method. Another option
is generate a different frequency for each species.

The current method of handling gaps is computationally easy, but the gaps
introduce significant changes to a sequence score, so that the I values of a

5



heavily gapped sequence would compare poorly with an ungapped, but highly
homologous sequence.

References

[1] The Pfam protein familes database
A. Bateman, E. Birney, et al.
Nucleic Acids Research, 30(1):276-280, 2002.

[3] Occurrence Probability of Structured Motifs in Random Sequences
S. Robin, J.-J. Daudin, et al.
Journal of Computational Biology, 9(6):761-773, 2002.

6


